Research Article
BibTex RIS Cite

Year 2025, Volume: 8 Issue: 3, 581 - 592, 30.09.2025
https://doi.org/10.35208/ert.1527049

Abstract

References

  • I. M. Banat, P. Nigam, D. Singh, and R. Marchant, “Microbial decolorization of textile-dye-containing effluents: A review,” Bioresource Technology, vol. 58, no. 3, pp. 217–227, 1996. [CrossRef]
  • A. K. Verma, R. R. Dash, and P. Bhunia, “A review on chemical coagulation/flocculation technologies for removal of colour from textile wastewaters,” Journal of Environmental Management, vol. 93, no. 1, pp. 154–168, 2012. [CrossRef]
  • S. N. U. S. Bukhari, A. A. Shah, M. A. Bhatti, A. Tahira, I. A. Channa, A. K. Shah, A. D. Chandio, W. A. Mahdi, S. Alshehri, Z. H. Ibhupoto and W. Liu, “Psyllium-husk-assisted synthesis of ZnO microstructures with improved photocatalytic properties for the degradation of methylene blue (MB),” Nanomaterials, vol. 12, no. 20, 2022. [CrossRef]
  • T. S. Munonde, A. Nqombolo, S. Hobongwana, A. Mpupa, and P. N. Nomngongo, “Removal of methylene blue using MnO2@rGO nanocomposite from textile wastewater: Isotherms, kinetics and thermodynamics studies,” Heliyon, vol. 9, no. 4, p. e15502, 2023. [CrossRef]
  • B. Yardımcı, N. Kanmaz, M. Buğdaycı, and P. Demirçivi, “Synthesis of CuBDC metal-organic framework supported zinc oxide via ball-milling technique for enhanced adsorption of Orange-II,” Surfaces and Interfaces, vol. 46, p. 104122, 2024. [CrossRef]
  • A. A. Shah, M. Bhatti, A. Tahira, A. Chandio, I. Channa, A. Sahito, E. Chalangar, M. Willander, O. Nur and Z. Ibupoto, “Facile synthesis of copper doped ZnO nanorods for the efficient photo degradation of methylene blue and methyl orange,” Ceramics International, vol. 46, no. 8, pp. 9997–10005, 2020. [CrossRef]
  • N. Kanmaz, B. Yardimci, and P. Demircivi, “In situ synthesis of MIL-125 on cinnamon stick and improved via carboxymethyl cellulose : A sustainable approach for super-high crystal violet adsorption,” Journal of Colloid Interface Science, vol. 678, pp. 366–377, 2025. [CrossRef]
  • B. Shaikh, M. A. Bhatti, A. A. Shah, A. Tahira, A. K. Shah, A. Usto, U. Aftab, S. I. Bukhari, S. Alshehri, S. N. U. S. Bukhari, M. Tonezzer, B. Vigolo and Z. H. Ibhupoto, “Mn3O4@ZnO hybrid material: an excellent photocatalyst for the degradation of synthetic dyes including methylene blue, methyl orange and malachite green,” Nanomaterials, vol. 12, no. 21, pp. 1–16, 2022. [CrossRef]
  • M. Tariq, M. Muhammad, J. Khan, A. Raziq, M. Uddin, A. Niaz, S. Ahmed and A. Rahim, “Removal of Rhodamine B dye from aqueous solutions using photo-Fenton processes and novel Ni-Cu@MWCNTs photocatalyst,” Journal of Molecular Liquids, vol. 312, p. 113399, 2020. [CrossRef]
  • B. Yardımcı and N. Kanmaz, “An effective-green strategy of methylene blue adsorption : Sustainable and low-cost waste cinnamon bark biomass enhanced via MnO2,” Journal of Environmental Chemical Engineering, vol. 11, p. 110254, 2023. [CrossRef]
  • S. N. U. S. Bukhari, A. A. Shah, W. Liu, I. A. Channa, A. D. Chandio, I. A. Chandio and Z. H. Ibupoto, “Activated carbon based TiO2 nanocomposites (TiO2@AC) used simultaneous adsorption and photocatalytic oxidation for the efficient removal of Rhodamine-B (Rh–B),” Ceramics International, vol. 50, 2024. [CrossRef]
  • A. K. Behera, K. P. Shadangi, and P. K. Sarangi, “Efficient removal of Rhodamine B dye using biochar as an adsorbent: Study the performance, kinetics, thermodynamics, adsorption isotherms and its reusability,” Chemosphere, vol. 354, p. 141702, 2024. [CrossRef]
  • K. X. Shi, F. Qiu, P. Wang, H. Li, and C. C. Wang, “Magnetic MgFe2O4/MIL-88A catalyst for photo-Fenton sulfamethoxazole decomposition under visible light,” Separation and Purification Technology, vol. 301, p. 121965, 2022. [CrossRef]
  • B. Cuiping, X. Xianfeng, G. Wenqi, F. Dexin, X. Mo, G. Zhongxue and X. Nian, “Removal of rhodamine B by ozone-based advanced oxidation process,” Desalination, vol. 278, no. 1–3, pp. 84–90, 2011. [CrossRef]
  • J. Godwin, J. R. Njimou, N. A. Salam, P. K. Panda, B. C. Tripathy, M. K. Ghosh and S. Basu, “Nanoscale ZnO-adsorbent carefully designed for the kinetic and thermodynamic studies of Rhodamine B,” Inorganic Chemistry Communication, vol. 138, p. 109287, 2022. [CrossRef]
  • L. Maccarino, V. Miglio, G. Paul, G. Golemme, C. Bisio, and L. Marchese, “Swellable hybrid silicas for the removal of rhodamine B dye from aqueous phase,” Microporous Mesoporous Materials, vol. 375, p. 113178, 2024. [CrossRef]
  • J. Li, T. Li, G. Xue, J. Liu, P. Ma, and L. Wang, “One step synthesis of cerium-based porous carbon microsphere by ultrasonic spray pyrolysis and its adsorption of rhodamine B,” Separation and Purification Technology, vol. 346, p. 127524, 2024. [CrossRef]
  • Q.-Z. Zhai, “Adsorption of Rhodamine B dye on potassium permanganate modified peanut shell: adsorption kinetics, thermodynamics and isotherm studies,” Desalination and Water Treatment, vol. 303, pp. 212–223, 2023. [CrossRef]
  • H. Murray, “Common clays,” Applied Clay Mineralogy: Occurrences, Processing and Applications of Kaolins, Bentonites, Palygorskite-Sepiolite, and Common Clays, vol. 2, pp. 141–145, 2007.
  • P. Demirçivi and G. N. Saygılı, “Response surface modeling of boron adsorption from aqueous solution by vermiculite using different adsorption agents: Box-Behnken experimental design,” Water Science and Technology, pp. 1–17, 2017. [CrossRef]
  • Z. Huang, J. Bu, and H. Wang, “Adsorption effect of two modified kaolin materials on wastewater containing multi-component organic dyes,” Desalination and Water Treatment, vol. 250, pp. 266–287, 2022. [CrossRef]
  • S. Ethaib and S. L. Zubaidi, “Removal of methylene blue dye from aqueous solution using kaolin,” IOP Conference Series: Materials Science and Engineering, vol. 928, no. 2, 2020. [CrossRef]
  • T. A. Aragaw and A. N. Alene, “A comparative study of acidic, basic, and reactive dyes adsorption from aqueous solution onto kaolin adsorbent: Effect of operating parameters, isotherms, kinetics, and thermodynamics,” Emerging Contaminants, vol. 8, pp. 59–74, 2022. [CrossRef]
  • D. T. Nguyen, H. N. Nguyen, T. M. Nguyen, H. C. Dong, N. N. Dang, Q. H. Tran, T. A. Nguyen, M. V. Tran, T. L. H. Doan, L. C. Luu and M. V. Nguyen , “An excellent photodegradation efficiency of methylene blue and rhodamine B dyes in a series of porphyrinic Aluminum-based MOFs metallated by copper and cobalt metals,” Colloids Surfaces A Physicochemical Engineering Aspects, vol. 689, p. 133663, 20243. [CrossRef]
  • B. Mohan, Virender, R. Kumar Gupta, A. J. L. Pombeiro, and P. Ren, “Advanced luminescent metal–organic framework (MOF) sensors engineered for urine analysis applications,” Coordination Chemistry Reviews, vol. 519, p. 216090, 2024. [CrossRef]
  • H. Li, J. Lei, L. Zhu, Y. Yao, Y. Li, T. Li and C. Qiu, “MOF synthesis using waste PET for applications of adsorption, catalysis and energy storage,” Green Energy and Environment, vol. 9, 2024. [CrossRef]
  • N. Kanmaz and P. Demircivi, “Construction of novel HKUST-1 supported vermiculite composite for excellent enhancing of malachite green adsorption,” Dyes and Pigments, vol. 226, p. 112153, 2024. [CrossRef]
  • H. G. Kim, K. Choi, K. Lee, S. Lee, K. W. Jung, and J. W. Choi, “Controlling the structural robustness of zirconium-based metal organic frameworks for efficient adsorption on tetracycline antibiotics,” Water, vol. 13, no. 13, 2021. [CrossRef]
  • K. Chattopadhyay, M. Mandal, and D. K. Maiti, “A review on zirconium-based metal-organic frameworks: synthetic approaches and biomedical applications,” Materials Advances, vol. 5, no. 1, pp. 51–67, 2023. [CrossRef]
  • Z. Chen, S. L. Hanna, L. R. Redfern, D. Alezi, T. Islamoglu, and O. K. Farha, “Reticular chemistry in the rational synthesis of functional zirconium cluster-based MOFs,” Coordination Chemistry Reviews, vol. 386, pp. 32–49, 2019. [CrossRef]
  • K. Ahmad, M. A. Nazir, A. K. Qureshi, E. Hussain, T. Najam, M. S. Javed, S. S. A. Shah, M. K. Tufail, S. Hussain, N. A. Khan, H. R. Shah and M. Ashfaq, “Engineering of zirconium based metal-organic frameworks (Zr-MOFs) as efficient adsorbents,” Materials Science and Engineering: B, vol. 262, p. 114766, 2020. [CrossRef]
  • M. N. Nimbalkar and B. R. Bhat, “Simultaneous adsorption of methylene blue and heavy metals from water using Zr-MOF having free carboxylic group,” Journal of Environmental Chemical Engineering, vol. 9, no. 5, p. 106216, 2021. [CrossRef]
  • S. W. Lv, J. M. Liu, H. Ma, Z. H. Wang, C. Y. Li, N. Zhao and S. Wang, “Simultaneous adsorption of methyl orange and methylene blue from aqueous solution using amino functionalized Zr-based MOFs,” Microporous Mesoporous Materials, vol. 282, no. 94, pp. 179–187, 2019. [CrossRef]
  • M. Ishfaq, S. A. Khan, M. A. Nazir, S. Ali, M. Younas, M. Mansha, S. S. A. Shah, M. Arshad and A. Rehman, “The in situ synthesis of sunlight-driven Chitosan/MnO2@MOF-801 nanocomposites for photocatalytic reduction of Rhodamine-B,” Journal of Molecular Structure, vol. 1301, 2023, p. 137384, 2024. [CrossRef]
  • H. Su, J. Hou, J. Zhu, Y. Zhang, and B. Van der Bruggen, “Room-temperature aqueous synthesis of MOF-808(Zr) for selective adsorption of dye mixtures,” Separation and Purification Technology, vol. 333, 2023, p. 125957, 2024. [CrossRef]
  • P. K. Kumar and S. S. Veni, “Adsorptive removal of crystal violet from aqueous solution by ultrasonic-assisted synthesized zirconium-2,6-naphthalenedicarboxylate metal-organic framework,” Turkish Journal of Chemistry, vol. 46, no. 6, pp. 1972–1983, 2022. [CrossRef]
  • N. Kanmaz and P. Demircivi, “Adsorption of tetracycline using one-pot synthesis zirconium metal-organic framework (UiO-66) decorated hydroxyapatite,” Journal of Molecular Liqudis, vol. 397, p. 124171, 2024. [CrossRef]
  • X. Chen, S. Peng, and J. Wang, “Retention profile and kinetics characteristics of the radionuclide 90-Sr(II) onto kaolinite,” Journal of Radioanalytical Nuclear Chemistry, vol. 303, no. 1, pp. 509–519, 2015. [CrossRef]
  • A. Tironi, M. A. Trezza, E. F. Irassar, and A. N. Scian, “Thermal treatment of kaolin: effect on the pozzolanic activity,” Procedia Material Science, vol. 1, 2014, pp. 343–350, 2012. [CrossRef]
  • M. R. Shaik, S. F. Adil, Z. A. Alothman, and O. M. Alduhaish, “Fumarate based metal–organic framework: An effective catalyst for the transesterification of used vegetable oil,” Crystals, vol. 12, no. 2, 2022. [CrossRef]
  • D. Redaoui, F. Sahnoune, M. Heraiz, H. Belhouchet, and M. Fatmi, “Thermal decomposition kinetics of Algerian Tamazarte kaolinite by thermogravimetric analysis,” Transactions of Nonferrous Metals Society of China, vol. 27, no. 8, pp. 1849–1855, 2017. [CrossRef]
  • A. Zegeye, S. Yahaya, C. I. Fialips, M. L. White, N. D. Gray, and D. A. C. Manning, “Refinement of industrial kaolin by microbial removal of iron-bearing impurities,” Applied Clay Science, vol. 86, pp. 47–53, 2013. [CrossRef]
  • M. Samari, S. Zinadini, A. A. Zinatizadeh, M. Jafarzadeh, and F. Gholami, “Designing of a novel polyethersulfone (PES) ultrafiltration (UF) membrane with thermal stability and high fouling resistance using melamine-modified zirconium-based metal-organic framework (UiO-66-NH2/MOF),” Separation and Purification Technology, vol. 251, p. 117010, 2020. [CrossRef]
  • A. K. Panda, B. G. Mishra, D. K. Mishra, and R. K. Singh, “Effect of sulphuric acid treatment on the physico-chemical characteristics of kaolin clay,” Colloids Surfaces A Physicochemical Engineering Aspects, vol. 363, no. 1–3, pp. 98–104, 2010. [CrossRef]
  • R. R. Pawar, C. Chuaicham, K. Sekar, S. Rajendran, and K. Sasaki, “Synthesis, characterization, and application of MOF@clay composite as a visible light-driven photocatalyst for Rhodamine B degradation,” Chemosphere, vol. 291, p. 132922, 2022. [CrossRef]
  • E. Mouafo-Tchinda, J. C. Kemmegne-Mbouguen, C. P. Nanseu-Njiki, H. W. Langmi, C. Kowenje, N. M. Musyoka and R. Mokaya, “Solvothermal synthesis of organoclay/Cu-MOF composite and its application in film modified GCE for simultaneous electrochemical detection of deoxyepinephrine, acetaminophen and tyrosine,” RSC Advances, vol. 13, no. 30, pp. 20816–20829, 2023. [CrossRef]
  • K. Y. Foo and B. H. Hameed, “Insights into the modeling of adsorption isotherm systems,” Chemical Engineering Journal, vol. 156, no. 1, pp. 2–10, 2010. [CrossRef]
  • M. S. Abdel-Wahed, A. S. El-Kalliny, F. A. Shehata, A. M. Abd El-Aty, and T. A. Gad-Allah, “One-pot green synthesis of magnetic adsorbent via Anabaena sphaerica and its performance towards Remazol Red dye removal from aqueous media,” Chemical Engineering Science, vol. 279, p. 118939, 2023. [CrossRef]
  • M. Chiban, A. Soudani, F. Sinan, and M. Persin, “Single, binary and multi-component adsorption of some anions and heavy metals on environmentally friendly Carpobrotus edulis plant,” Colloids Surfaces B Biointerfaces, vol. 82, no. 2, pp. 267–276, 2011. [CrossRef]
  • M. Hemdan, A. H. Ragab, N. F. Gumaah, and M. F. Mubarak, “Sodium alginate-encapsulated nano-iron oxide coupled with copper-based MOFs (Cu-BTC@Alg/Fe3O4): Versatile composites for eco-friendly and effective elimination of Rhodamine B dye in wastewater purification,” International Journal of Biological Macromolecules, vol. 274, 2024. [CrossRef]
  • W. Cui, X. Kang, X. Zhang, and X. Cui, “Gel-like ZnO/Zr-MOF(bpy) nanocomposite for highly efficient adsorption of Rhodamine B dye from aqueous solution,” Journal of Physics and Chemistry of Solids, vol. 134, pp. 165–175, 2019. [CrossRef]
  • K. Kuśmierek, J. Fronczyk, and A. Świątkowski, “Adsorptive removal of rhodamine B dye from aqueous solutions using mineral materials as low-cost adsorbents,” Water, Air and Soil Pollution, vol. 234, no. 8, 2023. [CrossRef]
  • M. Sadiku, K. Jusufi, and D. Mehmeti, “Removal of Rhodamine B from water using natural clay: a study on adsorption kinetics, thermodynamics, and environmental impact,” International Journal of Environmental Analytical Chemistry, pp. 1–13, 2024. [CrossRef]
  • W. Wu, C. Wu, G. Zhang, J. Liu, Y. Li, and G. Li, “Synthesis and characterization of magnetic K2CO3-activated carbon produced from bamboo shoot for the adsorption of Rhodamine b and CO2 capture,” Fuel, vol. 332, p. 126107, 2023. [CrossRef]
  • B. Bouider and K. Rida, “Adsorption of Rhodamine B, methyl Orange, and phenol separately in aqueous systems by magnetic activated carbon: Optimization by central composite design,” Material Science and Engineering: B, vol. 307, p. 117502, 2024. [CrossRef]
  • G. H. Al-Hazmi, A. M. A. Adam, M. G. El-Desouky, A. A. ElBindary, A. M. Alsuhaibani, and M. S. Refat, “Efficient adsorption of rohodamine B using a composite of Fe3O4@ZIF-8: Synthesis, characterization, modeling analysis, statistical physics and mechanism of interaction,” Bulletin of the Chemical Society of Ethiopia, vol. 37, no. 1, pp. 211–229, 2023. [CrossRef]
  • C. Yang, S. Wu, J. Cheng, and Y. Chen, “Indium-based metal-organic framework/graphite oxide composite as an efficient adsorbent in the adsorption of rhodamine B from aqueous solution,” Journal of Alloys and Compounds, vol. 687, pp. 804–812, 2016. [CrossRef]
  • K. N. Khattak, M. Zhang, C. Deng, S. Li, L. Jiang, P. G. Karmaker and Xiupei Yang , “Fabrication of the NH2-MIL-125(Ti)@TpPa-NO2 hybrid material and its efficient adsorption and removal of rhodamine B in wastewater,” Material Science and Engineering: B, vol. 307, no. 2, p. 117492, 2024. [CrossRef]
  • L. Biswal, J. E. Goodwill, C. Janiak, and S. Chatterjee, “Versatility, cost analysis, and scale-up in fluoride and arsenic removal using metal-organic framework-based adsorbents,” Separation & Purification Reviews, vol. 51, no. 3, pp. 408–426, 2022. [CrossRef]
  • S. Praveen, R. Gokulan, T. B. Pushpa, and J. Jegan, “Techno-economic feasibility of biochar as biosorbent for basic dye sequestration,” Journal of Indian Chemical Society, vol. 98, no. 8, p. 100107, 2021. [CrossRef]

Incorporation of zirconium-based metal-organic framework on kaolin for boosting Rhodamine-B adsorption

Year 2025, Volume: 8 Issue: 3, 581 - 592, 30.09.2025
https://doi.org/10.35208/ert.1527049

Abstract

This research was focused on the utilization of zirconium-based metal-organic framework (UiO-66) supported kaolin composite (UiO-66@kaolin) for rhodamine-b (RB) adsorption. The proposed composite was prepared via solvothermal method, and the structural properties were characterized by FT-IR, SEM, XRD and BET analyses. The adsorption performances of kaolin and UiO-66@kaolin were compared with equilibrium experiments and the maximum monolayer adsorption capacities calculated from the Langmuir model were found as 2.10 mg g-1 and 17.22 mg g-1, respectively. It was observed that the adsorption capacity of pristine kaolin was significantly increased by UiO-66 incorporation. While kaolin mineral was fitted to monolayer Langmuir isotherm model, the isotherm character of the composite adsorbent was described as multilayer Freundlich model. The equilibrium time for UiO-66@kaolin was 240 min and the adsorption process was determined as pseudo-second-order model. It was observed that RB removal rate decreased in acidic medium and consequently pH had a major effect on adsorption. The thermodynamic parameters demonstrated that RB adsorption was exothermic and spontaneous. The effective removal of RB dye from wastewater systems using the prepared UiO-66@kaolin composite adsorbent was confirmed by extensive adsorption experiments and compared with other studies. For the economic analysis of UiO-66@kaolin as an adsorbent a cost evaluation was carried out. The reported findings may inspire further potential investigations.

References

  • I. M. Banat, P. Nigam, D. Singh, and R. Marchant, “Microbial decolorization of textile-dye-containing effluents: A review,” Bioresource Technology, vol. 58, no. 3, pp. 217–227, 1996. [CrossRef]
  • A. K. Verma, R. R. Dash, and P. Bhunia, “A review on chemical coagulation/flocculation technologies for removal of colour from textile wastewaters,” Journal of Environmental Management, vol. 93, no. 1, pp. 154–168, 2012. [CrossRef]
  • S. N. U. S. Bukhari, A. A. Shah, M. A. Bhatti, A. Tahira, I. A. Channa, A. K. Shah, A. D. Chandio, W. A. Mahdi, S. Alshehri, Z. H. Ibhupoto and W. Liu, “Psyllium-husk-assisted synthesis of ZnO microstructures with improved photocatalytic properties for the degradation of methylene blue (MB),” Nanomaterials, vol. 12, no. 20, 2022. [CrossRef]
  • T. S. Munonde, A. Nqombolo, S. Hobongwana, A. Mpupa, and P. N. Nomngongo, “Removal of methylene blue using MnO2@rGO nanocomposite from textile wastewater: Isotherms, kinetics and thermodynamics studies,” Heliyon, vol. 9, no. 4, p. e15502, 2023. [CrossRef]
  • B. Yardımcı, N. Kanmaz, M. Buğdaycı, and P. Demirçivi, “Synthesis of CuBDC metal-organic framework supported zinc oxide via ball-milling technique for enhanced adsorption of Orange-II,” Surfaces and Interfaces, vol. 46, p. 104122, 2024. [CrossRef]
  • A. A. Shah, M. Bhatti, A. Tahira, A. Chandio, I. Channa, A. Sahito, E. Chalangar, M. Willander, O. Nur and Z. Ibupoto, “Facile synthesis of copper doped ZnO nanorods for the efficient photo degradation of methylene blue and methyl orange,” Ceramics International, vol. 46, no. 8, pp. 9997–10005, 2020. [CrossRef]
  • N. Kanmaz, B. Yardimci, and P. Demircivi, “In situ synthesis of MIL-125 on cinnamon stick and improved via carboxymethyl cellulose : A sustainable approach for super-high crystal violet adsorption,” Journal of Colloid Interface Science, vol. 678, pp. 366–377, 2025. [CrossRef]
  • B. Shaikh, M. A. Bhatti, A. A. Shah, A. Tahira, A. K. Shah, A. Usto, U. Aftab, S. I. Bukhari, S. Alshehri, S. N. U. S. Bukhari, M. Tonezzer, B. Vigolo and Z. H. Ibhupoto, “Mn3O4@ZnO hybrid material: an excellent photocatalyst for the degradation of synthetic dyes including methylene blue, methyl orange and malachite green,” Nanomaterials, vol. 12, no. 21, pp. 1–16, 2022. [CrossRef]
  • M. Tariq, M. Muhammad, J. Khan, A. Raziq, M. Uddin, A. Niaz, S. Ahmed and A. Rahim, “Removal of Rhodamine B dye from aqueous solutions using photo-Fenton processes and novel Ni-Cu@MWCNTs photocatalyst,” Journal of Molecular Liquids, vol. 312, p. 113399, 2020. [CrossRef]
  • B. Yardımcı and N. Kanmaz, “An effective-green strategy of methylene blue adsorption : Sustainable and low-cost waste cinnamon bark biomass enhanced via MnO2,” Journal of Environmental Chemical Engineering, vol. 11, p. 110254, 2023. [CrossRef]
  • S. N. U. S. Bukhari, A. A. Shah, W. Liu, I. A. Channa, A. D. Chandio, I. A. Chandio and Z. H. Ibupoto, “Activated carbon based TiO2 nanocomposites (TiO2@AC) used simultaneous adsorption and photocatalytic oxidation for the efficient removal of Rhodamine-B (Rh–B),” Ceramics International, vol. 50, 2024. [CrossRef]
  • A. K. Behera, K. P. Shadangi, and P. K. Sarangi, “Efficient removal of Rhodamine B dye using biochar as an adsorbent: Study the performance, kinetics, thermodynamics, adsorption isotherms and its reusability,” Chemosphere, vol. 354, p. 141702, 2024. [CrossRef]
  • K. X. Shi, F. Qiu, P. Wang, H. Li, and C. C. Wang, “Magnetic MgFe2O4/MIL-88A catalyst for photo-Fenton sulfamethoxazole decomposition under visible light,” Separation and Purification Technology, vol. 301, p. 121965, 2022. [CrossRef]
  • B. Cuiping, X. Xianfeng, G. Wenqi, F. Dexin, X. Mo, G. Zhongxue and X. Nian, “Removal of rhodamine B by ozone-based advanced oxidation process,” Desalination, vol. 278, no. 1–3, pp. 84–90, 2011. [CrossRef]
  • J. Godwin, J. R. Njimou, N. A. Salam, P. K. Panda, B. C. Tripathy, M. K. Ghosh and S. Basu, “Nanoscale ZnO-adsorbent carefully designed for the kinetic and thermodynamic studies of Rhodamine B,” Inorganic Chemistry Communication, vol. 138, p. 109287, 2022. [CrossRef]
  • L. Maccarino, V. Miglio, G. Paul, G. Golemme, C. Bisio, and L. Marchese, “Swellable hybrid silicas for the removal of rhodamine B dye from aqueous phase,” Microporous Mesoporous Materials, vol. 375, p. 113178, 2024. [CrossRef]
  • J. Li, T. Li, G. Xue, J. Liu, P. Ma, and L. Wang, “One step synthesis of cerium-based porous carbon microsphere by ultrasonic spray pyrolysis and its adsorption of rhodamine B,” Separation and Purification Technology, vol. 346, p. 127524, 2024. [CrossRef]
  • Q.-Z. Zhai, “Adsorption of Rhodamine B dye on potassium permanganate modified peanut shell: adsorption kinetics, thermodynamics and isotherm studies,” Desalination and Water Treatment, vol. 303, pp. 212–223, 2023. [CrossRef]
  • H. Murray, “Common clays,” Applied Clay Mineralogy: Occurrences, Processing and Applications of Kaolins, Bentonites, Palygorskite-Sepiolite, and Common Clays, vol. 2, pp. 141–145, 2007.
  • P. Demirçivi and G. N. Saygılı, “Response surface modeling of boron adsorption from aqueous solution by vermiculite using different adsorption agents: Box-Behnken experimental design,” Water Science and Technology, pp. 1–17, 2017. [CrossRef]
  • Z. Huang, J. Bu, and H. Wang, “Adsorption effect of two modified kaolin materials on wastewater containing multi-component organic dyes,” Desalination and Water Treatment, vol. 250, pp. 266–287, 2022. [CrossRef]
  • S. Ethaib and S. L. Zubaidi, “Removal of methylene blue dye from aqueous solution using kaolin,” IOP Conference Series: Materials Science and Engineering, vol. 928, no. 2, 2020. [CrossRef]
  • T. A. Aragaw and A. N. Alene, “A comparative study of acidic, basic, and reactive dyes adsorption from aqueous solution onto kaolin adsorbent: Effect of operating parameters, isotherms, kinetics, and thermodynamics,” Emerging Contaminants, vol. 8, pp. 59–74, 2022. [CrossRef]
  • D. T. Nguyen, H. N. Nguyen, T. M. Nguyen, H. C. Dong, N. N. Dang, Q. H. Tran, T. A. Nguyen, M. V. Tran, T. L. H. Doan, L. C. Luu and M. V. Nguyen , “An excellent photodegradation efficiency of methylene blue and rhodamine B dyes in a series of porphyrinic Aluminum-based MOFs metallated by copper and cobalt metals,” Colloids Surfaces A Physicochemical Engineering Aspects, vol. 689, p. 133663, 20243. [CrossRef]
  • B. Mohan, Virender, R. Kumar Gupta, A. J. L. Pombeiro, and P. Ren, “Advanced luminescent metal–organic framework (MOF) sensors engineered for urine analysis applications,” Coordination Chemistry Reviews, vol. 519, p. 216090, 2024. [CrossRef]
  • H. Li, J. Lei, L. Zhu, Y. Yao, Y. Li, T. Li and C. Qiu, “MOF synthesis using waste PET for applications of adsorption, catalysis and energy storage,” Green Energy and Environment, vol. 9, 2024. [CrossRef]
  • N. Kanmaz and P. Demircivi, “Construction of novel HKUST-1 supported vermiculite composite for excellent enhancing of malachite green adsorption,” Dyes and Pigments, vol. 226, p. 112153, 2024. [CrossRef]
  • H. G. Kim, K. Choi, K. Lee, S. Lee, K. W. Jung, and J. W. Choi, “Controlling the structural robustness of zirconium-based metal organic frameworks for efficient adsorption on tetracycline antibiotics,” Water, vol. 13, no. 13, 2021. [CrossRef]
  • K. Chattopadhyay, M. Mandal, and D. K. Maiti, “A review on zirconium-based metal-organic frameworks: synthetic approaches and biomedical applications,” Materials Advances, vol. 5, no. 1, pp. 51–67, 2023. [CrossRef]
  • Z. Chen, S. L. Hanna, L. R. Redfern, D. Alezi, T. Islamoglu, and O. K. Farha, “Reticular chemistry in the rational synthesis of functional zirconium cluster-based MOFs,” Coordination Chemistry Reviews, vol. 386, pp. 32–49, 2019. [CrossRef]
  • K. Ahmad, M. A. Nazir, A. K. Qureshi, E. Hussain, T. Najam, M. S. Javed, S. S. A. Shah, M. K. Tufail, S. Hussain, N. A. Khan, H. R. Shah and M. Ashfaq, “Engineering of zirconium based metal-organic frameworks (Zr-MOFs) as efficient adsorbents,” Materials Science and Engineering: B, vol. 262, p. 114766, 2020. [CrossRef]
  • M. N. Nimbalkar and B. R. Bhat, “Simultaneous adsorption of methylene blue and heavy metals from water using Zr-MOF having free carboxylic group,” Journal of Environmental Chemical Engineering, vol. 9, no. 5, p. 106216, 2021. [CrossRef]
  • S. W. Lv, J. M. Liu, H. Ma, Z. H. Wang, C. Y. Li, N. Zhao and S. Wang, “Simultaneous adsorption of methyl orange and methylene blue from aqueous solution using amino functionalized Zr-based MOFs,” Microporous Mesoporous Materials, vol. 282, no. 94, pp. 179–187, 2019. [CrossRef]
  • M. Ishfaq, S. A. Khan, M. A. Nazir, S. Ali, M. Younas, M. Mansha, S. S. A. Shah, M. Arshad and A. Rehman, “The in situ synthesis of sunlight-driven Chitosan/MnO2@MOF-801 nanocomposites for photocatalytic reduction of Rhodamine-B,” Journal of Molecular Structure, vol. 1301, 2023, p. 137384, 2024. [CrossRef]
  • H. Su, J. Hou, J. Zhu, Y. Zhang, and B. Van der Bruggen, “Room-temperature aqueous synthesis of MOF-808(Zr) for selective adsorption of dye mixtures,” Separation and Purification Technology, vol. 333, 2023, p. 125957, 2024. [CrossRef]
  • P. K. Kumar and S. S. Veni, “Adsorptive removal of crystal violet from aqueous solution by ultrasonic-assisted synthesized zirconium-2,6-naphthalenedicarboxylate metal-organic framework,” Turkish Journal of Chemistry, vol. 46, no. 6, pp. 1972–1983, 2022. [CrossRef]
  • N. Kanmaz and P. Demircivi, “Adsorption of tetracycline using one-pot synthesis zirconium metal-organic framework (UiO-66) decorated hydroxyapatite,” Journal of Molecular Liqudis, vol. 397, p. 124171, 2024. [CrossRef]
  • X. Chen, S. Peng, and J. Wang, “Retention profile and kinetics characteristics of the radionuclide 90-Sr(II) onto kaolinite,” Journal of Radioanalytical Nuclear Chemistry, vol. 303, no. 1, pp. 509–519, 2015. [CrossRef]
  • A. Tironi, M. A. Trezza, E. F. Irassar, and A. N. Scian, “Thermal treatment of kaolin: effect on the pozzolanic activity,” Procedia Material Science, vol. 1, 2014, pp. 343–350, 2012. [CrossRef]
  • M. R. Shaik, S. F. Adil, Z. A. Alothman, and O. M. Alduhaish, “Fumarate based metal–organic framework: An effective catalyst for the transesterification of used vegetable oil,” Crystals, vol. 12, no. 2, 2022. [CrossRef]
  • D. Redaoui, F. Sahnoune, M. Heraiz, H. Belhouchet, and M. Fatmi, “Thermal decomposition kinetics of Algerian Tamazarte kaolinite by thermogravimetric analysis,” Transactions of Nonferrous Metals Society of China, vol. 27, no. 8, pp. 1849–1855, 2017. [CrossRef]
  • A. Zegeye, S. Yahaya, C. I. Fialips, M. L. White, N. D. Gray, and D. A. C. Manning, “Refinement of industrial kaolin by microbial removal of iron-bearing impurities,” Applied Clay Science, vol. 86, pp. 47–53, 2013. [CrossRef]
  • M. Samari, S. Zinadini, A. A. Zinatizadeh, M. Jafarzadeh, and F. Gholami, “Designing of a novel polyethersulfone (PES) ultrafiltration (UF) membrane with thermal stability and high fouling resistance using melamine-modified zirconium-based metal-organic framework (UiO-66-NH2/MOF),” Separation and Purification Technology, vol. 251, p. 117010, 2020. [CrossRef]
  • A. K. Panda, B. G. Mishra, D. K. Mishra, and R. K. Singh, “Effect of sulphuric acid treatment on the physico-chemical characteristics of kaolin clay,” Colloids Surfaces A Physicochemical Engineering Aspects, vol. 363, no. 1–3, pp. 98–104, 2010. [CrossRef]
  • R. R. Pawar, C. Chuaicham, K. Sekar, S. Rajendran, and K. Sasaki, “Synthesis, characterization, and application of MOF@clay composite as a visible light-driven photocatalyst for Rhodamine B degradation,” Chemosphere, vol. 291, p. 132922, 2022. [CrossRef]
  • E. Mouafo-Tchinda, J. C. Kemmegne-Mbouguen, C. P. Nanseu-Njiki, H. W. Langmi, C. Kowenje, N. M. Musyoka and R. Mokaya, “Solvothermal synthesis of organoclay/Cu-MOF composite and its application in film modified GCE for simultaneous electrochemical detection of deoxyepinephrine, acetaminophen and tyrosine,” RSC Advances, vol. 13, no. 30, pp. 20816–20829, 2023. [CrossRef]
  • K. Y. Foo and B. H. Hameed, “Insights into the modeling of adsorption isotherm systems,” Chemical Engineering Journal, vol. 156, no. 1, pp. 2–10, 2010. [CrossRef]
  • M. S. Abdel-Wahed, A. S. El-Kalliny, F. A. Shehata, A. M. Abd El-Aty, and T. A. Gad-Allah, “One-pot green synthesis of magnetic adsorbent via Anabaena sphaerica and its performance towards Remazol Red dye removal from aqueous media,” Chemical Engineering Science, vol. 279, p. 118939, 2023. [CrossRef]
  • M. Chiban, A. Soudani, F. Sinan, and M. Persin, “Single, binary and multi-component adsorption of some anions and heavy metals on environmentally friendly Carpobrotus edulis plant,” Colloids Surfaces B Biointerfaces, vol. 82, no. 2, pp. 267–276, 2011. [CrossRef]
  • M. Hemdan, A. H. Ragab, N. F. Gumaah, and M. F. Mubarak, “Sodium alginate-encapsulated nano-iron oxide coupled with copper-based MOFs (Cu-BTC@Alg/Fe3O4): Versatile composites for eco-friendly and effective elimination of Rhodamine B dye in wastewater purification,” International Journal of Biological Macromolecules, vol. 274, 2024. [CrossRef]
  • W. Cui, X. Kang, X. Zhang, and X. Cui, “Gel-like ZnO/Zr-MOF(bpy) nanocomposite for highly efficient adsorption of Rhodamine B dye from aqueous solution,” Journal of Physics and Chemistry of Solids, vol. 134, pp. 165–175, 2019. [CrossRef]
  • K. Kuśmierek, J. Fronczyk, and A. Świątkowski, “Adsorptive removal of rhodamine B dye from aqueous solutions using mineral materials as low-cost adsorbents,” Water, Air and Soil Pollution, vol. 234, no. 8, 2023. [CrossRef]
  • M. Sadiku, K. Jusufi, and D. Mehmeti, “Removal of Rhodamine B from water using natural clay: a study on adsorption kinetics, thermodynamics, and environmental impact,” International Journal of Environmental Analytical Chemistry, pp. 1–13, 2024. [CrossRef]
  • W. Wu, C. Wu, G. Zhang, J. Liu, Y. Li, and G. Li, “Synthesis and characterization of magnetic K2CO3-activated carbon produced from bamboo shoot for the adsorption of Rhodamine b and CO2 capture,” Fuel, vol. 332, p. 126107, 2023. [CrossRef]
  • B. Bouider and K. Rida, “Adsorption of Rhodamine B, methyl Orange, and phenol separately in aqueous systems by magnetic activated carbon: Optimization by central composite design,” Material Science and Engineering: B, vol. 307, p. 117502, 2024. [CrossRef]
  • G. H. Al-Hazmi, A. M. A. Adam, M. G. El-Desouky, A. A. ElBindary, A. M. Alsuhaibani, and M. S. Refat, “Efficient adsorption of rohodamine B using a composite of Fe3O4@ZIF-8: Synthesis, characterization, modeling analysis, statistical physics and mechanism of interaction,” Bulletin of the Chemical Society of Ethiopia, vol. 37, no. 1, pp. 211–229, 2023. [CrossRef]
  • C. Yang, S. Wu, J. Cheng, and Y. Chen, “Indium-based metal-organic framework/graphite oxide composite as an efficient adsorbent in the adsorption of rhodamine B from aqueous solution,” Journal of Alloys and Compounds, vol. 687, pp. 804–812, 2016. [CrossRef]
  • K. N. Khattak, M. Zhang, C. Deng, S. Li, L. Jiang, P. G. Karmaker and Xiupei Yang , “Fabrication of the NH2-MIL-125(Ti)@TpPa-NO2 hybrid material and its efficient adsorption and removal of rhodamine B in wastewater,” Material Science and Engineering: B, vol. 307, no. 2, p. 117492, 2024. [CrossRef]
  • L. Biswal, J. E. Goodwill, C. Janiak, and S. Chatterjee, “Versatility, cost analysis, and scale-up in fluoride and arsenic removal using metal-organic framework-based adsorbents,” Separation & Purification Reviews, vol. 51, no. 3, pp. 408–426, 2022. [CrossRef]
  • S. Praveen, R. Gokulan, T. B. Pushpa, and J. Jegan, “Techno-economic feasibility of biochar as biosorbent for basic dye sequestration,” Journal of Indian Chemical Society, vol. 98, no. 8, p. 100107, 2021. [CrossRef]
There are 60 citations in total.

Details

Primary Language English
Subjects Wastewater Treatment Processes, Environmental and Sustainable Processes
Journal Section Research Articles
Authors

Nergiz Kanmaz 0000-0002-5598-4911

Publication Date September 30, 2025
Submission Date August 2, 2024
Acceptance Date November 8, 2024
Published in Issue Year 2025 Volume: 8 Issue: 3

Cite

APA Kanmaz, N. (2025). Incorporation of zirconium-based metal-organic framework on kaolin for boosting Rhodamine-B adsorption. Environmental Research and Technology, 8(3), 581-592. https://doi.org/10.35208/ert.1527049
AMA Kanmaz N. Incorporation of zirconium-based metal-organic framework on kaolin for boosting Rhodamine-B adsorption. ERT. September 2025;8(3):581-592. doi:10.35208/ert.1527049
Chicago Kanmaz, Nergiz. “Incorporation of Zirconium-Based Metal-Organic Framework on Kaolin for Boosting Rhodamine-B Adsorption”. Environmental Research and Technology 8, no. 3 (September 2025): 581-92. https://doi.org/10.35208/ert.1527049.
EndNote Kanmaz N (September 1, 2025) Incorporation of zirconium-based metal-organic framework on kaolin for boosting Rhodamine-B adsorption. Environmental Research and Technology 8 3 581–592.
IEEE N. Kanmaz, “Incorporation of zirconium-based metal-organic framework on kaolin for boosting Rhodamine-B adsorption”, ERT, vol. 8, no. 3, pp. 581–592, 2025, doi: 10.35208/ert.1527049.
ISNAD Kanmaz, Nergiz. “Incorporation of Zirconium-Based Metal-Organic Framework on Kaolin for Boosting Rhodamine-B Adsorption”. Environmental Research and Technology 8/3 (September2025), 581-592. https://doi.org/10.35208/ert.1527049.
JAMA Kanmaz N. Incorporation of zirconium-based metal-organic framework on kaolin for boosting Rhodamine-B adsorption. ERT. 2025;8:581–592.
MLA Kanmaz, Nergiz. “Incorporation of Zirconium-Based Metal-Organic Framework on Kaolin for Boosting Rhodamine-B Adsorption”. Environmental Research and Technology, vol. 8, no. 3, 2025, pp. 581-92, doi:10.35208/ert.1527049.
Vancouver Kanmaz N. Incorporation of zirconium-based metal-organic framework on kaolin for boosting Rhodamine-B adsorption. ERT. 2025;8(3):581-92.