Research Article
BibTex RIS Cite

Magnetic susceptibility and conductivity variations of Horseshoe Island (Antarctica): An indicator of environmental pollution vs lithological change

Year 2025, Volume: 8 Issue: 4, 940 - 951, 31.12.2025
https://doi.org/10.35208/ert.1587144

Abstract

Magnetic susceptibility and conductivity surveys are widely used to identify rock lithological changes, soil quality, and pollution (both atmospheric and human-related) due to their cost-effectiveness, energy efficiency, and simplicity. This study aims to determine the magnetic properties of igneous rocks, classified into five groups, on the northern side of Horseshoe Island (Antarctica). Rock samples were collected from 22 locations, covering five distinct lithologies. Measurements of magnetic susceptibility and conductivity were conducted at 1 cm vertical intervals, resulting in 828 recorded values. The data, analyzed at three levels (top, overall, and bottom), were used to differentiate between surface/atmospheric and mineralogical origins of the rocks. The results indicated that gabbro had the highest average susceptibility (3.91 × 10⁻³ CGS), while granitic gneiss showed zero susceptibility in all measurements. Conversely, granitic gneiss exhibited the highest conductivity values (116 S/m), whereas gabbro displayed the lowest conductivity (18.6 S/m). Spatially, susceptibility variations followed a northeast-southwest trend, particularly noticeable near the Turkish Scientific Station. High susceptibility was observed near Historical Site No. 63, while low values were concentrated around Gaul Cove. The findings highlight lithological differences, though snow and glacier cover limited precise boundary determinations. No significant differences were observed between surface and depth averages, suggesting mineral content influences exceed pollution effects.

Supporting Institution

TUBITAK MAM Polar Research Institute

Project Number

TUBITAK, project no. 122G255

References

  • P. Yang, J. M. Byrne, H. Li, and H.-B. Shao, ‘Evaluation of semi-arid arable soil heavy metal pollution by magnetic susceptibility in the Linfen basin of China’, Arid Land Research and Management, vol. 30, no. 3, pp. 258–268, 2016.
  • L. Luo, Y. Ma, S. Zhang, D. Wei, and Y. G. Zhu, ‘An inventory of trace element inputs to agricultural soils in China’, Journal of Environmental Management, vol. 90, no. 8, 2009, doi: 10.1016/j.jenvman.2009.01.011.
  • V. Hoffmann, M. Knab, and E. Appel, ‘Magnetic susceptibility mapping of roadside pollution’, Journal of Geochemical Exploration, vol. 66, no. 1–2, 1999, doi: 10.1016/S0375-6742(99)00014-X.
  • M. Rachwał, K. Kardel, T. Magiera, and O. Bens, ‘Application of magnetic susceptibility in assessment of heavy metal contamination of Saxonian soil (Germany) caused by industrial dust deposition’, Geoderma, vol. 295, 2017, doi: 10.1016/j.geoderma.2017.02.007.
  • Menshov, O., Vyzhva, S., Horoshkova, L., Tonkha, O., Ivanik, O., Pereira, P., Dindaroglu, T., Pastushenko, T., Eiben, H. ‘Distribution of soil magnetic susceptibility as a pollution indicator in the urban and tourist city of Lviv, Ukraine’, Environ Earth Sci, vol. 82, no. 21, 2023, doi: 10.1007/s12665-023-11176-8.
  • A. Schmidt, R. Yarnold, M. Hill, and M. Ashmore, ‘Magnetic susceptibility as proxy for heavy metal pollution: A site study’, Journal of Geochemical Exploration, vol. 85, no. 3, 2005, doi: 10.1016/j.gexplo.2004.12.001.
  • M. A. E. Chaparro, H. Nuñez, J. M. Lirio, C. S. G. Gogorza, and A. M. Sinito, ‘Magnetic screening and heavy metal pollution studies in soils from Marambio Station, Antarctica’, Antarctic Science, vol. 19, no. 3, 2007, doi: 10.1017/S0954102007000454.
  • T. Magiera, Z. Strzyszcz, A. Kapicka, and E. Petrovsky, ‘Discrimination of lithogenic and anthropogenic influences on topsoil magnetic susceptibility in Central Europe’, Geoderma, vol. 130, no. 3–4, 2006, doi: 10.1016/j.geoderma.2005.02.002.
  • M. Hanesch and R. Scholger, ‘Mapping of heavy metal loadings in soils by means of magnetic susceptibility measurements’, Environmental Geology, vol. 42, no. 8, 2002, doi: 10.1007/s00254-002-0604-1.
  • T. Özkaptan, A. E. Babacan, and M. Özkaptan, ‘Geophysical and morphological constraints on active tectonics in the Eastern Pontides (Turkey)’, Tectonophysics, vol. 843, 2022, doi: 10.1016/j.tecto.2022.229620.
  • Maus, S., Barckhausen, U., Berkenbosch, H., Bournas, N., Brozena, J., Childers, V., Dostaler, F., Fairhead, J. D.,Finn, C.,von Frese,R.R.B.,Gaina,C.,Golynsky,S.,Kucks, R.,Lühr, H.,Milligan,P.,Mogren,S.,Müller,R.D.,Olesen,O.,Pilkington,M.,Saltus,R.,Schreckenberger, B., Thébault, E.,Caratori Tontini, F. ‘EMAG2: A 2–arc min resolution Earth Magnetic Anomaly Grid compiled from satellite, airborne, and marine magnetic measurements’, Geochemistry, Geophysics, Geosystems, vol. 10, no. 8, doi: 10.1029/2009GC002471.
  • B. Meyer, R. Saltus, and A. Chulliat, ‘EMAG2v3: Earth Magnetic Anomaly Grid (2-arc-minute resolution)’, NOAA National Centers for Environmental Information. [Online]. Available: https://doi.org/10.7289/V5H70CVX
  • D. Jordanova, L. Veneva, and V. Hoffmann, ‘Magnetic susceptibility screening of anthropogenic impact on the Danube river sediments in Northwestern Bulgaria - Preliminary results’, Studia Geophysica et Geodaetica, vol. 47, no. 2, 2003, doi: 10.1023/A:1023736111156.
  • S. G. Lu, S. Q. Bai, and Q. F. Xue, ‘Magnetic properties as indicators of heavy metals pollution in urban topsoils: A case study from the city of Luoyang, China’, Geophys J Int, vol. 171, no. 2, 2007, doi: 10.1111/j.1365-246X.2007.03545.x.
  • T. Yang, Q. Liu, L. Chan, and G. Cao, ‘Magnetic investigation of heavy metals contamination in urban topsoils around the East Lake, Wuhan, China’, Geophysical Journal International, vol. 171, no. 2, 2007, doi: 10.1111/j.1365-246X.2007.03558.x.
  • Morton-Bermea, O., Hernandez, E., Martinez-Pichardo, E., Soler-Arechalde, A. M., Santa-Cruz,R.L., Gonzalez-Hernandez, G., L. Beramendi-Orosco, Urrutia-Fucugauchi, J. ,‘Mexico City topsoils: Heavy metals vs. magnetic susceptibility’, Geoderma, vol. 151, no. 3–4, 2009, doi: 10.1016/j.geoderma.2009.03.019.
  • Ö. Makaroglu, ‘Küçükçekmece Lagünü’nün Çevre Manyetizması: Son 3900 yıl boyunca paleo-ortam değişimleri’, Journal of Advanced Research in Natural and Applied Sciences, vol. 9, no. 3, pp. 545–559, 2023.
  • M. El Baghdadi, A. Barakat, M. Sajieddine, and S. Nadem, ‘Heavy metal pollution and soil magnetic susceptibility in urban soil of Beni Mellal City (Morocco)’, Environmental Earth Sciences, vol. 66, no. 1, 2012, doi: 10.1007/s12665-011-1215-5.
  • R. Kandemir, Y. Demir, C. Şen, and U. C. Yağcioğlu, ‘The petrogenesis of analcime in the Coppermine Formation on Robert Island, South Shetland Islands, Antarctica’, Turkish Journal of Earth Sciences, vol. 32, no. SI-8, 2023, doi: 10.55730/1300-0985.1886.
  • N. S. Ergüven, B. Özsoy, S. Yirmibeşoğlu, and Ö. Oktar, ‘Regulation of Mineral Resource Activities in Antarctica’, International Journal of Environment and Geoinformatics, vol. 9, no. 2, 2022, doi: 10.30897/ijegeo.907991.
  • R. G. B. Renner, ‘British Antartic Survey Scientific Reports: No.77, Gravity and Magnetic Surveys in Grahan Land’, 1980.
  • C. Yıldırım, A. Çiner, M. A. Sarıkaya, and A. Hidy, ‘Cosmogenic surface exposure (10Be) dating of raised beaches in Marguerite bay, Antarctic Peninsula: Implications for relative sea-level history’, Quaternary Science Reviews, vol. 344, p. 108995, Nov. 2024, doi: 10.1016/J.QUASCIREV.2024.108995.
  • C. Yıldırım, ‘Geomorphology of Horseshoe Island, Marguerite Bay, Antarctica’, Journal of Maps, vol. 16, no. 2, 2020, doi: 10.1080/17445647.2019.1692700.
  • D. W. Matthews, ‘The geology of Horseshoe and Lagotellerie Islands, Marguerite Bay, Graham Land.’, British Antarctic Survey Bulletin, vol. 52, 1983.
  • M. R. A. Thomson, R. J. Pankhurst, and P. D. Clarkson, ‘The Antarctic Peninsula - a Late Mesozoic- Cenozoic arc (review).’, Antarctic earth science. 4th international symposium, 1983.
  • B. C. Storey and S. W. Garrett, ‘Crustal growth of the Antarctic Peninsula by accretion, magmatism and extension’, Geological Magazine, vol. 122, no. 1, 1985, doi: 10.1017/S0016756800034038.
  • I. L. Millar, R. J. Pankhurst, and C. M. Fanning, ‘Basement chronology of the Antarctic Peninsula: Recurrent magmatism and anatexis in the Palaeozoic Gondwana margin’, Journal of the Geological Society, vol. 159, no. 2, 2002, doi: 10.1144/0016-764901-020.
  • A. P. M. Vaughan, C. D. Wareham, and I. L. Millar, ‘Granitoid pluton formation by spreading of continental crust: The Wiley Glacier complex, northwest Palmer Land, Antarctica’, Tectonophysics, vol. 283, no. 1–4, 1997, doi: 10.1016/S0040-1951(97)00150-9.
  • S. Yirmibeşoğlu, Ö. Oktar, and B. Özsoy, ‘Review of Scientific Research Conducted in Horseshoe Island Where Potential Place for Turkish Antarctic Base’, International Journal of Environment and Geoinformatics, vol. 9, no. 4, 2022, doi: 10.30897/ijegeo.1018913.
There are 29 citations in total.

Details

Primary Language English
Subjects Pollution and Contamination (Other), Environmental Problems, Earth System Sciences
Journal Section Research Article
Authors

Murat Özkaptan 0000-0002-8317-7754

Mert Kaya 0009-0006-6194-703X

Project Number TUBITAK, project no. 122G255
Early Pub Date November 18, 2025
Publication Date December 31, 2025
Submission Date November 18, 2024
Acceptance Date January 20, 2025
Published in Issue Year 2025 Volume: 8 Issue: 4

Cite

APA Özkaptan, M., & Kaya, M. (2025). Magnetic susceptibility and conductivity variations of Horseshoe Island (Antarctica): An indicator of environmental pollution vs lithological change. Environmental Research and Technology, 8(4), 940-951. https://doi.org/10.35208/ert.1587144
AMA Özkaptan M, Kaya M. Magnetic susceptibility and conductivity variations of Horseshoe Island (Antarctica): An indicator of environmental pollution vs lithological change. ERT. December 2025;8(4):940-951. doi:10.35208/ert.1587144
Chicago Özkaptan, Murat, and Mert Kaya. “Magnetic Susceptibility and Conductivity Variations of Horseshoe Island (Antarctica): An Indicator of Environmental Pollution Vs Lithological Change”. Environmental Research and Technology 8, no. 4 (December 2025): 940-51. https://doi.org/10.35208/ert.1587144.
EndNote Özkaptan M, Kaya M (December 1, 2025) Magnetic susceptibility and conductivity variations of Horseshoe Island (Antarctica): An indicator of environmental pollution vs lithological change. Environmental Research and Technology 8 4 940–951.
IEEE M. Özkaptan and M. Kaya, “Magnetic susceptibility and conductivity variations of Horseshoe Island (Antarctica): An indicator of environmental pollution vs lithological change”, ERT, vol. 8, no. 4, pp. 940–951, 2025, doi: 10.35208/ert.1587144.
ISNAD Özkaptan, Murat - Kaya, Mert. “Magnetic Susceptibility and Conductivity Variations of Horseshoe Island (Antarctica): An Indicator of Environmental Pollution Vs Lithological Change”. Environmental Research and Technology 8/4 (December2025), 940-951. https://doi.org/10.35208/ert.1587144.
JAMA Özkaptan M, Kaya M. Magnetic susceptibility and conductivity variations of Horseshoe Island (Antarctica): An indicator of environmental pollution vs lithological change. ERT. 2025;8:940–951.
MLA Özkaptan, Murat and Mert Kaya. “Magnetic Susceptibility and Conductivity Variations of Horseshoe Island (Antarctica): An Indicator of Environmental Pollution Vs Lithological Change”. Environmental Research and Technology, vol. 8, no. 4, 2025, pp. 940-51, doi:10.35208/ert.1587144.
Vancouver Özkaptan M, Kaya M. Magnetic susceptibility and conductivity variations of Horseshoe Island (Antarctica): An indicator of environmental pollution vs lithological change. ERT. 2025;8(4):940-51.