Year 2025,
Volume: 8 Issue: 4, 1062 - 1079, 31.12.2025
Tolulope Kolajo
,
Nabil Elkaoud
,
Iyinoluwa Adedokun
,
Oluwaseun Kadiri
,
Temitayo Ajibade
References
-
N.S.M. Elkaoud, R.K. Mahmoud, H.H. Tarabye, and M.S. Adam, “Promoting food security and sustainability with a transportable indirect evaporative solar pre-cooler,” Revista Facultad Nacional de Agronomía Medellín, Vol. 77(3), pp. 10865-10876, 2024. https://doi.org/10.15446/rfnam.v77n3.110667
-
N. Gao, L. Zhang, and C. Wu, “Biomass and Wastes for Bioenergy: Thermochemical Conversion and Biotechnologies,” BioMed Research International, Vol. 2018, Article ID 9638380, pp. 1-2, https://doi.org/10.1155/2018/9638380
-
J. Wang, S. Liu, T. Gallagher, D. DeVallance, and L. Denes, “Forest Biomass Utilization for Biofuels and Bioproducts,” International Journal of Forestry Research, Vol. 2012, pp. 1-2, 2012. https://doi.org/10.1155/2012/656834
-
C. Bonechi, M. Consumi, A. Donati, G. Leone, A. Magnani, G. Tamasi, and C. Rossi, “Biomass: An overview,” in F. Dalena, A. Basile, and C. Rossi (Eds.), Bioenergy systems for the future, prospects for biofuels and biohydrogen, Duxford: Woodhead Publishing, Vol. 148, pp. 3-42, 2017. https://doi.org/10.1016/b978-0-08-101031-0.00001-6
-
S.M. Bukar and H.M. Abba. “Vegetation Structure and Diversity in Northern Yobe,” Nigeria. Asian Journal of Plant Biology, Vol. 4(1), pp. 36-42, 2022.
-
J. Ben-Iwo, V. Manovic, and P. Longhurst, “Biomass resources and biofuels potential for the production of transportation fuels in Nigeria,” Renewable and Sustainable Energy Reviews, Vol. 63, pp. 172-192 2016. https://doi.org/10.1016/j.rser.2016.05.050
-
J. Ogwo, O. Dike, S.O. Mathew, and A. Emmanuel, “Overview of biomass energy production in Nigeria: Implications and challenges,” Asian Journal of Natural & Applied Sciences, Vol. 1, pp. 46-51, 2012.
-
EUBIA. “Biomass Processing Technologies,” Available at eubia.org/cms/wiki-biomass/biomass-processing-technologies 2023., (accessed 15 February 2023)
-
R.A. Houghton, “Biomass,” in S. E. Jorgensen, and B. D. Fath (Eds.), Encyclopedia of ecology, Amsterdam: Elsevier, pp. 448–453, 2008. https://doi.org/10.1016/B978-0-444-63768-0.00462-5
-
A. Tursi, “A review on biomass: importance, chemistry, classification, and conversion,” Biofuel Research Journal, Vol 22, pp. 962-979, 2019.
-
A. Mishra, L. Singh, and D. Singh, “Unboxing the black box-one step forward to understand the soil microbiome: A systematic review,” Microbial Ecology, Vol. 85(2), pp. 669-683, 2023. https://doi.org/10.1007/s00248-022-01962-5
-
M. Casau, M.F. Dias, J.C.O. Matias, and L.J.R. Nunes, “Residual Biomass: A Comprehensive Review on the Importance, Uses and Potential in a Circular Bioeconomy Approach,” Resources. Vol. 11(4), pp. 35, 2022.
-
J. Sánchez, M.D. Curt, N. Robert, and J. Fernández, “Biomass Resources. The Role of Bioenergy in the Bioeconomy,” pp. 25–111, 2019. https://doi.org/10.1016/b978-0-12-813056-8.00002-9
-
G.K. Gupta and M.K. Mondal. “Bioenergy generation from agricultural wastes and enrichment of end products,”. Refining Biomass Residues for Sustainable Energy and Bioproducts pp. 337-356, 2020. https://doi.org/10.1016/b978-0-12-818996-2.00015-6
-
A.A.A. Abuelnuor, “Analysis of sugarcane bagasse from Kenana and White Nile companies in Sudan,” Biomass Conv. Bioref 2024. https://doi.org/10.1007/s13399-024-06358-8
-
E.O. Ajala, J.O. Ighalo, and M.A. Ajala. “Sugarcane bagasse: a biomass sufficiently applied for improving global energy,” environment and economic sustainability. Bioresour. Bioprocess pp 8-87, 2021. https://doi.org/10.1186/s40643-021-00440-z
-
OECD, “Agricultural land (indicator),” Available: https://data.oecd.org/agrland/agricultural-land.htm (accessed 19 January, 2023).
-
Q. Kang, L. Appels, T. Tan, and R. Dewil “Bioethanol from Lignocellulosic Biomass Current Findings Determine Research Priorities,” The Scientific World Journal p. 1-13, 2014. https://doi.org/10.1155/2014/298153
-
A.F. Cristino, D. Logan, J.C. Bordado, and S.R. Galhano “The Role of Ionic Liquids on Biomass Liquefaction—A Short Review of the Recent Advances,” Processes Vol. 9(1214) pp. 1-13, 2021 https://doi.org/10.3390/ pr9071214
-
Ó.J. Sánchez and S. Montoya. “Production of Bioethanol from Biomass: An Overview,” in Gupta, V., Tuohy, M. (eds) Biofuel Technologies, Springer, Berlin, Heidelberg, pp. 397–441, 2013. https://doi.org/10.1007/978-3-642-34519-7_16
-
R.A. Ilyas, M.Y.M. Zuhri, M.N.F. Norrrahim, M.S.M. Misenan, M.A. Jenol, S.A. Samsudin, N.M. Nurazzi, M.R.M. Asyraf, A.B.M. Supian, S.P. Bangar, R. Nadlene, S. Sharma, and A.A.B. Omran, “Natural Fiber-Reinforced Polycaprolactone Green and Hybrid Biocomposites for Various Advanced Applications. Polymers, Vol. 14(1)182, pp. 1-28, 2022. https://doi.org/10.3390/polym14010182
-
A.O. Ayeni, F.K.S. Hymore, S.N. Mudliar, S.C. Deskmukh, D.B. Satpute, J.A. Omoleye, and R.A. Pandey, “Hydrogen peroxide and lime based oxidative pretreatment of wood waste to enhance enzymatic hydrolysis for a biorefinery: Process parameters optimization using response surface methodology,” Fuel. Vol. 106, pp. 187-194, 2013. https://doi.org/10.1016/j.fuel.2012.12.078
-
X. Ge, C. Chang, L. Zhang, Shaoqing Cui, Xiaolan Luo, Shengjun Hu, Yusheng Qin, and Yebo Li, Chapter Five “Conversion of Lignocellulosic Biomass Into Platform Chemicals for Biobased Polyurethane Application,” Editor(s): Yebo Li, Xumeng Ge, Advances in Bioenergy, Elsevier, Vol. 3, pp. 161-213, 2018.
-
M. Broda, D.J. Yelle, and K. Serwańska, “Bioethanol Production from Lignocellulosic Biomass-Challenges and Solutions,” Molecules. Vol. 27(24), 8717, 2022.
-
T. Riitonen, V. Eta, S. Hyvärinen, L.J. Jönsson, and J.P. Mikkola, “Engineering Aspects of Bioethanol Synthesis,” Advances in Chemical Engineering, Vol. 42, pp. 1–73, 2013. https://doi.org/10.1016/b978-0-12-386505-2.00001-8
-
Y. Liu, Y. Tang, H. Gao, W. Zhang, Y. Jiang, F. Xin, and M. Jiang, “Challenges and Future Perspectives of Promising Biotechnologies for Lignocellulosic Biorefinery,” Molecules, Vol. 26(17), 5411, pp. 1-15, 2021. https://doi.org/10.3390/molecules26175411
-
FAO. Global Forest Resources Assessment, Desk reference, Terms and Definitions. FAO Report, 36. Available: https://openknowledge.fao.org/server/api/core/bitstreams/5100a18e-1432-42b1-945e-398daac0176e/content., 2015, (accessed 1 Des. 2024)
-
FAO. Global Forest Resources Assessment, Key findings, Main report. Rome. https://doi.org/10.4060/ca9825en, Available: https://openknowledge.fao.org/server/api/core/bitstreams/9f24d451-2e56-4ae2-8a4a-1bc511f5e60e/content., 2020 (accessed 1 Des. 2024)
-
R. Raunikar, J. Buongiorno, J.A. Turner, and S. Zhu, “Global outlook for wood and forests with the bioenergy demand implied by scenarios of the Intergovernmental Panel on Climate Change,” Forest Policy and Economics, Vol. 12(1), pp. 48–56, 2010. https://doi.org/10.1016/j.forpol.2009.09.013
-
Z. Tan, K. Chen, and P. Liu, “Possibilities and challenges of China׳s forestry biomass resource utilization,” Renewable and Sustainable Energy Reviews, Vol. 41, pp. 368-378, 2015. https://doi.org/10.1016/j.rser.2014.08.059
-
A. Saravanakumar, P. Vijayakumar, A.T. Hoang, E. K. Eilhann, and C. Wei-Hsin, “Thermochemical conversion of large-size woody biomass for carbon neutrality,” Principles, applications, and issues, Bioresource Technology, Vol. 370, 128562, 2023.
-
A.I. Calvo, L.A.C. Tarelho, E.R. Teixeira, C. Alves, T. Nunes, M. Duarte, and R. Fraile, “Particulate emissions from the co-combustion of forest biomass and sewage sludge in a bubbling fluidized bed reactor,” Fuel Processing Technology, Vol. 114, pp. 58-68, 2023. https://doi.org/10.1016/j.fuproc.2013.03.021
-
M.K. Lam, A.C.M. Loy, S. Yusup, and K.T. Lee. Biohydrogen Production from Algae. Biohydrogen, pp. 219-245. https://doi.org/10.1016/b978-0-444-64203-5.00009-5
-
Q. Yu, Y. Wang, Q. Van Le, H. Yang, H. Hosseinzadeh-Bandbafha, Y. Yang, C. Sonne, M. Tabatabaei, S.S. Lam, and W. Peng, “An Overview on the Conversion of Forest Biomass into Bioenergy Front,” Energy Research, Vol. 9, 684234, 2021. https://doi.org/10.3389/fenrg.2021.684234
-
B.S. Hoffmann, A. Szklo, and R. Schaeffer, “An evaluation of the techno-economic potential of co-firing coal with woody biomass in thermal power plants in the south of Brazil,” Biomass and Bioenergy, Vol. 45 pp. 295-302, 2012. https://doi.org/10.1016/j.biombioe.2012.06.016
-
G.W. O’Neil, G. Knothe, and C.M. Reddy, “Jet biofuels from algae,” Biofuels from Algae, Biomass, Biofuels, Biochemicals, pp. 359-395, 2019. https://doi.org/10.1016/b978-0-444-64192-2.00015-9
-
Y. Dahman, C. Dignan, A. Fiayaz, and A. Chaudhry, “An introduction to biofuels, foods, livestock, and the environment,” Biomass, Biopolymer-Based Materials, and Bioenergy pp. 241-276 2019. https://doi.org/10.1016/b978-0-08-102426-3.00013-8
-
P.J. De Wild, “Biomass Pyrolysis for Hybrid Biorefineries,” Industrial Biorefineries, White Biotechnology, pp. 341-368, 2015. https://doi.org/10.1016/b978-0-444-63453-5.00010-0
-
J.C.J. Bart, N. Palmeri, and S. “Cavallaro Feedstocks for biodiesel production,” Biodiesel Science and Technology pp. 130-225, 2010. https://doi.org/10.1533/9781845697761.13
-
P. Biller, “Hydrothermal liquefaction of aquatic Feedstocks,” Direct Thermochemical Liquefaction for Energy Applications, pp. 101-125, 2018. https://doi.org/10.1016/b978-0-08-101029-7.00003-5
-
Y. Dahman, K. Syed, S. Begum, P. Roy, and B. Mohtasebi, “Biofuels: Their characteristics and analysis Biofuels,” Biomass, Biopolymer-Based Materials, and Bioenergy, Construction, Biomedical, and other Industrial Applications Woodhead Publishing Series in Composites Science and Engineering, pp. 277-325, 2019. https://doi.org/10.1016/b978-0-08-102426-3.00014-x
-
H.S. El-Beltagi, A.A. Mohamed, H.I. Mohamed, K.M.A. Ramadan, A.A. Barqawi, and A.T. Mansour, “Phytochemical and Potential Properties of Seaweeds and Their Recent Applications: A Review,” Marine Drugs. Vol. 20(6), pp. 342, 2022. https://doi.org/10.3390/md20060342
-
E.K. Onyari, G.U. Fayomi, and A.T. Jaiyeola, “Unveiling the situation of water hyacinth on fresh water bodies in Nigeria and South Africa: Management, workable practices and potentials,” Case Studies in Chemical and Environmental Engineering, Vol. 10, 100974, 2024. https://doi.org/10.1016/j.cscee.2024.100974
-
A.T. Irewale, C.O. Dimkpa, E.E. Elemike, and E.E. Oguzie, “Water hyacinth: Prospects for biochar-based, nano-enabled biofertilizer development,” Heliyon, Vol. 10(17), e36966. pp. 1-18, 2024. https://doi.org/10.1016/j.heliyon.2024.e36966
-
F.I. Gómez-Castro and C. Gutiérrez-Antonio, “Chapter 1 - Biomass: The driver for sustainable development, Biofuels and Biorefining,” Elsevier pp. 1-23, ISBN 9780128241165, 2024. https://doi.org/10.1016/B978-0-12-824116-5.00008-8
-
K. Balina, F. Romagnoli, and D. Blumberga, “Seaweed biorefinery concept for sustainable use of marine resources,” Energy Procedia, Vol. 128, pp. 504-511, 2017. https://doi.org/10.1016/j.egypro.2017.09.06
-
H.A. Alalwan, A.H. Alminshid, and H.A.S. Aljaafari, “Promising evolution of biofuel generations, Subject review,” Renew Energy Focus Vol. 28, pp. 127-139, ISSN 1755-0084, 2019. https://doi.org/10.1016/j.ref.2018.12.006
-
Q.A. Nguyen, W.A. Smith, B.D. Wahlen, and L.M. Wendt, “Total and Sustainable Utilization of Biomass Resources: A Perspective, Frontiers in Bioengineering and Biotechnology,” Vol. 8, pp. 2296-4185, 2020. https://doi.org/10.3389/fbioe.2020.00546
-
Z. Miao, T.E. Grift, A.C. Hansen, and K. Ting, “An overview of lignocellulosic biomass feedstock harvest, processing and supply for biofuel production,” Biofuels, Vol. 4(1), pp. 5-8, 2013. https://doi.org/10.4155/bfs.12.76
-
M. Patel, A.O. Oyedun, A. Kumar, and R.A. Gupta, “Techno-Economic Assessment of Renewable Diesel and Gasoline Production from Aspen Hardwood,” Waste and Biomass Valorization, Vol. 10, pp. 2745-2760, 2019. https://doi.org/10.1007/s12649-018-0359-x
-
S.U. Shivramu, B.R. Venkatappa, C. Laxman, B. Gowda, R.K. Kodi, and P.K. Thamaiah, “Synthesis and Characterization of Biodiesel from Simarouba glauca,” Biofuels and Bioenergy (BICE2016), pp. 51-57, 2017. https://doi.org/10.1007/978-3-319-47257-7_6
-
H. Honkanen and J. Kataja, “Technological aspects of nonfood agricultural lignocellulose transformations,” Bioenergy Systems for the Future, pp. 43-59, 2017. https://doi.org/10.1016/b978-0-08-101031-0.00002-8
-
M. Galbe and O. Wallberg, “Pretreatment for biorefineries: a review of common methods for efficient utilization of lignocellulosic materials,” Biotechnol Biofuels, Vol. 12, pp. 294, 2019. https://doi.org/10.1186/s13068-019-1634-1
-
V.B. Agbor, N. Cicek, R. Sparling, A. Berlin, and D.B. Levin, “Biomass pretreatment: Fundamentals toward application,” Biotechnology Advances, Vol. 29(6), pp. 675-685, 2011. https://doi.org/10.1016/j.biotechadv.2011.05.005
-
M.H. Langholtz, B.J. Stokes, and L.M. Eaton, “Billion-Ton Report: Advancing Domestic Resources for a Thriving Bioeconomy,” Economic Availability of Feedstocks, Oak Ridge, National Laboratory, Oak Ridge, Tennessee, managed by UT-Battelle, LLC for the US Department of Energy, Vol. 1, pp. 1-411, 2016. https://doi.org/10.2172/12 71651
-
Y. Zheng, J. Shi, M. Tu, and Y.S. Cheng, “Principles and Development of Lignocellulosic Biomass Pretreatment for Biofuels,” Advances in Bioenergy, Vol. 2, pp. 1-68, 2017. https://doi.org/10.1016/bs.aibe.2017.03.001
-
K. Robak and M. Balcerek, “Review of Second-Generation Bioethanol Production from Residual Biomass” Food Technology and Biotechnology, Vol. 56(2), 2018. https://doi.org/10.17113/ftb.56.02.18.5428
-
A.W. Bhutto, K. Qureshi, K. Harijan, R. Abro, T. Abbas, A.A. Bazmi, S. Karim, and G. Yu, “Insight into progress in pre-treatment of lignocellulosic biomass,” Energy, Elsevier, Vol. 122(C), pp. 724-745, 2017. https://doi.org/10.1016/j.energy.2017.01.005
-
J. Baruah, B.K. Nath, R. Sharma, S. Kumar, R.C. Deka, D.C. Baruah, E..Kalita, “Recent Trends in the Pretreatment of Lignocellulosic Biomass for Value-Added Products,” Frontiers in Energy Research, Vol. 6 (141), pp. 1-19, 2018. https://doi.org/10.3389/fenrg.2018.00141
-
M. Saghir, S. Zafar, A. Tahir, M. Ouadi, B. Siddique, A. Hornung, “Unlocking the Potential of Biomass Energy in Pakistan,” Front. Energy Research, pp. 7-24, 2019. https://doi.org/10.3389/fenrg.2019.00024
-
M. Mandø, “Direct combustion of biomass. Biomass Combustion Science,” Technology and Engineering, pp. 61-83. https://doi.org/10.1533/9780857097439.2.61
-
A. Garba, “Biomass Conversion Technologies for Bioenergy Generation: An Introduction,” Biotechnological Applications of Biomass, IntechOpen, 2021. https://doi.org/10.5772/intechopen.93669
-
L.J.R. Nunes, J.C.O. Matias, and J.P.S. Catalão. “Biomass combustion systems: A review on the physical and chemical properties of the ashes,” Renewable and Sustainable Energy Reviews, Vol. 53, pp. 235-242, 2016. https://doi.org/10.1016/j.rser.2015.08.053
-
Y. Hu, A. Bassi, and C. Xu (Charles), “Energy From Biomass,” Future Energy, Third Edition, pp. 447-471, 2020. https://doi.org/10.1016/b978-0-08-102886-5.00021-9
-
A. Demirbas and G. Arin, “An Overview of Biomass Pyrolysis,” Energy Sources, Vol. 24(5), pp. 471-482, 2002. https://doi.org/10.1080/00908310252889979
-
C. Pal, K. Asiani, S. Arya, C. Rensing, D.J. Stekel, D.J. Larsson, and J.L. Hobman, “Metal resistance and its association with antibiotic resistance,” Advances in microbial physiology, Vol. 70, pp. 261-313, 2017. https://doi.org/10.1016/bs.ampbs.2017.02.001
-
J. Laesecke, N. Ellis, and P. Kirchen, “Production, analysis and combustion characterization of biomass fast pyrolysis oil–Biodiesel blends for use in diesel engines,” Fuel. Vol. 199, pp. 346-357, 2017. https://doi.org/10.1016/j.fuel.2017.01.093
-
R. Bala, V. Gautam, and M.K. Mondal, “Improved biogas yield from organic fraction of municipal solid waste as preliminary step for fuel cell technology and hydrogen generation,” International Journal of Hydrogen Energy, Vol. 44(1), pp. 164-73, 2019. https://doi.org/10.1016/j.ijhydene.2018.02.072
-
R. Bharati and S. Suresh, “A review on nano-catalyst from waste for production of biofuel-via-bioenergy,” InBiofuels and Bioenergy (BICE2016) International Conference, Bhopal, India, Springer International Publishing, pp. 25-32, 2017. https://doi.org/10.1007/978-3-319-47257-7_3
-
T. Sharma, I.G. Hakeem, A.B. Gupta, J. Joshi, K. Shah, A.K. Vuppaladadiyam, and A. Sharma, “Parametric influence of process conditions on thermochemical techniques for biochar production: A state-of-the-art review,” Journal of the Energy Institute, Vol. 7, 101559, 2019. https://doi.org/10.1016/j.joei.2024.101559
-
L. Dorjee, K. Nishmitha, S. Pattanayak, T. Wangmu, S. Meshram, S. Chongtham, and R. Gogoi, “Biochar: A Comprehensive Review on a Natural Approach to Plant Disease Management,” Journal of Pure & Applied Microbiology, Vol. 18(1), 2024. https://doi.org/10.22207/JPAM.18.1.58
-
E. Borri, C. Antonios, P. Valeria, Z. Gabriel, F. Andrea, K. Sotirios, and F. C. Luisa, "Environmental impact of an innovative solar-biomass hybrid system for residential applications," Renewable Energy 239, 122138, 2025. https://doi.org/10.1016/j.renene.2024.122138
-
G. F. Ribeiro, and B. J. Aldo, “Construction of a Roadmap of the Technological Development Barrier and Adaptation of Agricultural Machinery in the Production Chain of Biomass Briquettes and Pellets from Agricultural Waste,”. Available at SSRN: https://ssrn.com/abstract=5084101 or http://dx.doi.org/10.2139/ssrn.5084101
-
K. Shu, B. Guan, Z. Zhuang, J. Chen, L. Zhu L, Z. Ma, Z. Hu, C. Zhu, S. Zhao, H. Dang, T. Zhu, “Reshaping the energy landscape: Explorations and strategic perspectives on hydrogen energy preparation, efficient storage, safe transportation and wide applications,”. International Journal of Hydrogen Energy. Jan 6(9)7, 160-213, 2025. https://doi.org/10.1016/j.ijhydene.2024.11.110
-
K. Roman, and E. Grzegorzewska, “Biomass Briquetting Technology for Sustainable Energy Solutions: Innovations in Forest Biomass Utilization,” Energies, 17(24), 6392, 2024. https://doi.org/10.3390/en17246392
Sustainable and effective biomass bioenergy production in Nigeria: An overview
Year 2025,
Volume: 8 Issue: 4, 1062 - 1079, 31.12.2025
Tolulope Kolajo
,
Nabil Elkaoud
,
Iyinoluwa Adedokun
,
Oluwaseun Kadiri
,
Temitayo Ajibade
Abstract
Nigeria, the largest economy in Africa, relies on conventional fossil fuels for several energy demands, including transportation and power generation. The negative environmental impacts and carbon emissions from burning fossil fuels highlight the urgent need to consider viable alternatives such as bioenergy, which is renewable energy derived from biological materials. The utilization of biofuels and bioproducts would significantly reduce the carbon footprint with other social and economic benefits such as income stability and improved public health, especially in rural communities. Although bioenergy research in Nigeria has been ongoing for several decades, the knowledge curve for utilization is very steep, despite the relative abundance of the raw materials needed to produce it. This review provides an overview of the biomass types used as feedstock for bioenergy production in Nigeria, discusses their characteristics, explores pretreatment and conversion techniques, and highlights their various applications.
References
-
N.S.M. Elkaoud, R.K. Mahmoud, H.H. Tarabye, and M.S. Adam, “Promoting food security and sustainability with a transportable indirect evaporative solar pre-cooler,” Revista Facultad Nacional de Agronomía Medellín, Vol. 77(3), pp. 10865-10876, 2024. https://doi.org/10.15446/rfnam.v77n3.110667
-
N. Gao, L. Zhang, and C. Wu, “Biomass and Wastes for Bioenergy: Thermochemical Conversion and Biotechnologies,” BioMed Research International, Vol. 2018, Article ID 9638380, pp. 1-2, https://doi.org/10.1155/2018/9638380
-
J. Wang, S. Liu, T. Gallagher, D. DeVallance, and L. Denes, “Forest Biomass Utilization for Biofuels and Bioproducts,” International Journal of Forestry Research, Vol. 2012, pp. 1-2, 2012. https://doi.org/10.1155/2012/656834
-
C. Bonechi, M. Consumi, A. Donati, G. Leone, A. Magnani, G. Tamasi, and C. Rossi, “Biomass: An overview,” in F. Dalena, A. Basile, and C. Rossi (Eds.), Bioenergy systems for the future, prospects for biofuels and biohydrogen, Duxford: Woodhead Publishing, Vol. 148, pp. 3-42, 2017. https://doi.org/10.1016/b978-0-08-101031-0.00001-6
-
S.M. Bukar and H.M. Abba. “Vegetation Structure and Diversity in Northern Yobe,” Nigeria. Asian Journal of Plant Biology, Vol. 4(1), pp. 36-42, 2022.
-
J. Ben-Iwo, V. Manovic, and P. Longhurst, “Biomass resources and biofuels potential for the production of transportation fuels in Nigeria,” Renewable and Sustainable Energy Reviews, Vol. 63, pp. 172-192 2016. https://doi.org/10.1016/j.rser.2016.05.050
-
J. Ogwo, O. Dike, S.O. Mathew, and A. Emmanuel, “Overview of biomass energy production in Nigeria: Implications and challenges,” Asian Journal of Natural & Applied Sciences, Vol. 1, pp. 46-51, 2012.
-
EUBIA. “Biomass Processing Technologies,” Available at eubia.org/cms/wiki-biomass/biomass-processing-technologies 2023., (accessed 15 February 2023)
-
R.A. Houghton, “Biomass,” in S. E. Jorgensen, and B. D. Fath (Eds.), Encyclopedia of ecology, Amsterdam: Elsevier, pp. 448–453, 2008. https://doi.org/10.1016/B978-0-444-63768-0.00462-5
-
A. Tursi, “A review on biomass: importance, chemistry, classification, and conversion,” Biofuel Research Journal, Vol 22, pp. 962-979, 2019.
-
A. Mishra, L. Singh, and D. Singh, “Unboxing the black box-one step forward to understand the soil microbiome: A systematic review,” Microbial Ecology, Vol. 85(2), pp. 669-683, 2023. https://doi.org/10.1007/s00248-022-01962-5
-
M. Casau, M.F. Dias, J.C.O. Matias, and L.J.R. Nunes, “Residual Biomass: A Comprehensive Review on the Importance, Uses and Potential in a Circular Bioeconomy Approach,” Resources. Vol. 11(4), pp. 35, 2022.
-
J. Sánchez, M.D. Curt, N. Robert, and J. Fernández, “Biomass Resources. The Role of Bioenergy in the Bioeconomy,” pp. 25–111, 2019. https://doi.org/10.1016/b978-0-12-813056-8.00002-9
-
G.K. Gupta and M.K. Mondal. “Bioenergy generation from agricultural wastes and enrichment of end products,”. Refining Biomass Residues for Sustainable Energy and Bioproducts pp. 337-356, 2020. https://doi.org/10.1016/b978-0-12-818996-2.00015-6
-
A.A.A. Abuelnuor, “Analysis of sugarcane bagasse from Kenana and White Nile companies in Sudan,” Biomass Conv. Bioref 2024. https://doi.org/10.1007/s13399-024-06358-8
-
E.O. Ajala, J.O. Ighalo, and M.A. Ajala. “Sugarcane bagasse: a biomass sufficiently applied for improving global energy,” environment and economic sustainability. Bioresour. Bioprocess pp 8-87, 2021. https://doi.org/10.1186/s40643-021-00440-z
-
OECD, “Agricultural land (indicator),” Available: https://data.oecd.org/agrland/agricultural-land.htm (accessed 19 January, 2023).
-
Q. Kang, L. Appels, T. Tan, and R. Dewil “Bioethanol from Lignocellulosic Biomass Current Findings Determine Research Priorities,” The Scientific World Journal p. 1-13, 2014. https://doi.org/10.1155/2014/298153
-
A.F. Cristino, D. Logan, J.C. Bordado, and S.R. Galhano “The Role of Ionic Liquids on Biomass Liquefaction—A Short Review of the Recent Advances,” Processes Vol. 9(1214) pp. 1-13, 2021 https://doi.org/10.3390/ pr9071214
-
Ó.J. Sánchez and S. Montoya. “Production of Bioethanol from Biomass: An Overview,” in Gupta, V., Tuohy, M. (eds) Biofuel Technologies, Springer, Berlin, Heidelberg, pp. 397–441, 2013. https://doi.org/10.1007/978-3-642-34519-7_16
-
R.A. Ilyas, M.Y.M. Zuhri, M.N.F. Norrrahim, M.S.M. Misenan, M.A. Jenol, S.A. Samsudin, N.M. Nurazzi, M.R.M. Asyraf, A.B.M. Supian, S.P. Bangar, R. Nadlene, S. Sharma, and A.A.B. Omran, “Natural Fiber-Reinforced Polycaprolactone Green and Hybrid Biocomposites for Various Advanced Applications. Polymers, Vol. 14(1)182, pp. 1-28, 2022. https://doi.org/10.3390/polym14010182
-
A.O. Ayeni, F.K.S. Hymore, S.N. Mudliar, S.C. Deskmukh, D.B. Satpute, J.A. Omoleye, and R.A. Pandey, “Hydrogen peroxide and lime based oxidative pretreatment of wood waste to enhance enzymatic hydrolysis for a biorefinery: Process parameters optimization using response surface methodology,” Fuel. Vol. 106, pp. 187-194, 2013. https://doi.org/10.1016/j.fuel.2012.12.078
-
X. Ge, C. Chang, L. Zhang, Shaoqing Cui, Xiaolan Luo, Shengjun Hu, Yusheng Qin, and Yebo Li, Chapter Five “Conversion of Lignocellulosic Biomass Into Platform Chemicals for Biobased Polyurethane Application,” Editor(s): Yebo Li, Xumeng Ge, Advances in Bioenergy, Elsevier, Vol. 3, pp. 161-213, 2018.
-
M. Broda, D.J. Yelle, and K. Serwańska, “Bioethanol Production from Lignocellulosic Biomass-Challenges and Solutions,” Molecules. Vol. 27(24), 8717, 2022.
-
T. Riitonen, V. Eta, S. Hyvärinen, L.J. Jönsson, and J.P. Mikkola, “Engineering Aspects of Bioethanol Synthesis,” Advances in Chemical Engineering, Vol. 42, pp. 1–73, 2013. https://doi.org/10.1016/b978-0-12-386505-2.00001-8
-
Y. Liu, Y. Tang, H. Gao, W. Zhang, Y. Jiang, F. Xin, and M. Jiang, “Challenges and Future Perspectives of Promising Biotechnologies for Lignocellulosic Biorefinery,” Molecules, Vol. 26(17), 5411, pp. 1-15, 2021. https://doi.org/10.3390/molecules26175411
-
FAO. Global Forest Resources Assessment, Desk reference, Terms and Definitions. FAO Report, 36. Available: https://openknowledge.fao.org/server/api/core/bitstreams/5100a18e-1432-42b1-945e-398daac0176e/content., 2015, (accessed 1 Des. 2024)
-
FAO. Global Forest Resources Assessment, Key findings, Main report. Rome. https://doi.org/10.4060/ca9825en, Available: https://openknowledge.fao.org/server/api/core/bitstreams/9f24d451-2e56-4ae2-8a4a-1bc511f5e60e/content., 2020 (accessed 1 Des. 2024)
-
R. Raunikar, J. Buongiorno, J.A. Turner, and S. Zhu, “Global outlook for wood and forests with the bioenergy demand implied by scenarios of the Intergovernmental Panel on Climate Change,” Forest Policy and Economics, Vol. 12(1), pp. 48–56, 2010. https://doi.org/10.1016/j.forpol.2009.09.013
-
Z. Tan, K. Chen, and P. Liu, “Possibilities and challenges of China׳s forestry biomass resource utilization,” Renewable and Sustainable Energy Reviews, Vol. 41, pp. 368-378, 2015. https://doi.org/10.1016/j.rser.2014.08.059
-
A. Saravanakumar, P. Vijayakumar, A.T. Hoang, E. K. Eilhann, and C. Wei-Hsin, “Thermochemical conversion of large-size woody biomass for carbon neutrality,” Principles, applications, and issues, Bioresource Technology, Vol. 370, 128562, 2023.
-
A.I. Calvo, L.A.C. Tarelho, E.R. Teixeira, C. Alves, T. Nunes, M. Duarte, and R. Fraile, “Particulate emissions from the co-combustion of forest biomass and sewage sludge in a bubbling fluidized bed reactor,” Fuel Processing Technology, Vol. 114, pp. 58-68, 2023. https://doi.org/10.1016/j.fuproc.2013.03.021
-
M.K. Lam, A.C.M. Loy, S. Yusup, and K.T. Lee. Biohydrogen Production from Algae. Biohydrogen, pp. 219-245. https://doi.org/10.1016/b978-0-444-64203-5.00009-5
-
Q. Yu, Y. Wang, Q. Van Le, H. Yang, H. Hosseinzadeh-Bandbafha, Y. Yang, C. Sonne, M. Tabatabaei, S.S. Lam, and W. Peng, “An Overview on the Conversion of Forest Biomass into Bioenergy Front,” Energy Research, Vol. 9, 684234, 2021. https://doi.org/10.3389/fenrg.2021.684234
-
B.S. Hoffmann, A. Szklo, and R. Schaeffer, “An evaluation of the techno-economic potential of co-firing coal with woody biomass in thermal power plants in the south of Brazil,” Biomass and Bioenergy, Vol. 45 pp. 295-302, 2012. https://doi.org/10.1016/j.biombioe.2012.06.016
-
G.W. O’Neil, G. Knothe, and C.M. Reddy, “Jet biofuels from algae,” Biofuels from Algae, Biomass, Biofuels, Biochemicals, pp. 359-395, 2019. https://doi.org/10.1016/b978-0-444-64192-2.00015-9
-
Y. Dahman, C. Dignan, A. Fiayaz, and A. Chaudhry, “An introduction to biofuels, foods, livestock, and the environment,” Biomass, Biopolymer-Based Materials, and Bioenergy pp. 241-276 2019. https://doi.org/10.1016/b978-0-08-102426-3.00013-8
-
P.J. De Wild, “Biomass Pyrolysis for Hybrid Biorefineries,” Industrial Biorefineries, White Biotechnology, pp. 341-368, 2015. https://doi.org/10.1016/b978-0-444-63453-5.00010-0
-
J.C.J. Bart, N. Palmeri, and S. “Cavallaro Feedstocks for biodiesel production,” Biodiesel Science and Technology pp. 130-225, 2010. https://doi.org/10.1533/9781845697761.13
-
P. Biller, “Hydrothermal liquefaction of aquatic Feedstocks,” Direct Thermochemical Liquefaction for Energy Applications, pp. 101-125, 2018. https://doi.org/10.1016/b978-0-08-101029-7.00003-5
-
Y. Dahman, K. Syed, S. Begum, P. Roy, and B. Mohtasebi, “Biofuels: Their characteristics and analysis Biofuels,” Biomass, Biopolymer-Based Materials, and Bioenergy, Construction, Biomedical, and other Industrial Applications Woodhead Publishing Series in Composites Science and Engineering, pp. 277-325, 2019. https://doi.org/10.1016/b978-0-08-102426-3.00014-x
-
H.S. El-Beltagi, A.A. Mohamed, H.I. Mohamed, K.M.A. Ramadan, A.A. Barqawi, and A.T. Mansour, “Phytochemical and Potential Properties of Seaweeds and Their Recent Applications: A Review,” Marine Drugs. Vol. 20(6), pp. 342, 2022. https://doi.org/10.3390/md20060342
-
E.K. Onyari, G.U. Fayomi, and A.T. Jaiyeola, “Unveiling the situation of water hyacinth on fresh water bodies in Nigeria and South Africa: Management, workable practices and potentials,” Case Studies in Chemical and Environmental Engineering, Vol. 10, 100974, 2024. https://doi.org/10.1016/j.cscee.2024.100974
-
A.T. Irewale, C.O. Dimkpa, E.E. Elemike, and E.E. Oguzie, “Water hyacinth: Prospects for biochar-based, nano-enabled biofertilizer development,” Heliyon, Vol. 10(17), e36966. pp. 1-18, 2024. https://doi.org/10.1016/j.heliyon.2024.e36966
-
F.I. Gómez-Castro and C. Gutiérrez-Antonio, “Chapter 1 - Biomass: The driver for sustainable development, Biofuels and Biorefining,” Elsevier pp. 1-23, ISBN 9780128241165, 2024. https://doi.org/10.1016/B978-0-12-824116-5.00008-8
-
K. Balina, F. Romagnoli, and D. Blumberga, “Seaweed biorefinery concept for sustainable use of marine resources,” Energy Procedia, Vol. 128, pp. 504-511, 2017. https://doi.org/10.1016/j.egypro.2017.09.06
-
H.A. Alalwan, A.H. Alminshid, and H.A.S. Aljaafari, “Promising evolution of biofuel generations, Subject review,” Renew Energy Focus Vol. 28, pp. 127-139, ISSN 1755-0084, 2019. https://doi.org/10.1016/j.ref.2018.12.006
-
Q.A. Nguyen, W.A. Smith, B.D. Wahlen, and L.M. Wendt, “Total and Sustainable Utilization of Biomass Resources: A Perspective, Frontiers in Bioengineering and Biotechnology,” Vol. 8, pp. 2296-4185, 2020. https://doi.org/10.3389/fbioe.2020.00546
-
Z. Miao, T.E. Grift, A.C. Hansen, and K. Ting, “An overview of lignocellulosic biomass feedstock harvest, processing and supply for biofuel production,” Biofuels, Vol. 4(1), pp. 5-8, 2013. https://doi.org/10.4155/bfs.12.76
-
M. Patel, A.O. Oyedun, A. Kumar, and R.A. Gupta, “Techno-Economic Assessment of Renewable Diesel and Gasoline Production from Aspen Hardwood,” Waste and Biomass Valorization, Vol. 10, pp. 2745-2760, 2019. https://doi.org/10.1007/s12649-018-0359-x
-
S.U. Shivramu, B.R. Venkatappa, C. Laxman, B. Gowda, R.K. Kodi, and P.K. Thamaiah, “Synthesis and Characterization of Biodiesel from Simarouba glauca,” Biofuels and Bioenergy (BICE2016), pp. 51-57, 2017. https://doi.org/10.1007/978-3-319-47257-7_6
-
H. Honkanen and J. Kataja, “Technological aspects of nonfood agricultural lignocellulose transformations,” Bioenergy Systems for the Future, pp. 43-59, 2017. https://doi.org/10.1016/b978-0-08-101031-0.00002-8
-
M. Galbe and O. Wallberg, “Pretreatment for biorefineries: a review of common methods for efficient utilization of lignocellulosic materials,” Biotechnol Biofuels, Vol. 12, pp. 294, 2019. https://doi.org/10.1186/s13068-019-1634-1
-
V.B. Agbor, N. Cicek, R. Sparling, A. Berlin, and D.B. Levin, “Biomass pretreatment: Fundamentals toward application,” Biotechnology Advances, Vol. 29(6), pp. 675-685, 2011. https://doi.org/10.1016/j.biotechadv.2011.05.005
-
M.H. Langholtz, B.J. Stokes, and L.M. Eaton, “Billion-Ton Report: Advancing Domestic Resources for a Thriving Bioeconomy,” Economic Availability of Feedstocks, Oak Ridge, National Laboratory, Oak Ridge, Tennessee, managed by UT-Battelle, LLC for the US Department of Energy, Vol. 1, pp. 1-411, 2016. https://doi.org/10.2172/12 71651
-
Y. Zheng, J. Shi, M. Tu, and Y.S. Cheng, “Principles and Development of Lignocellulosic Biomass Pretreatment for Biofuels,” Advances in Bioenergy, Vol. 2, pp. 1-68, 2017. https://doi.org/10.1016/bs.aibe.2017.03.001
-
K. Robak and M. Balcerek, “Review of Second-Generation Bioethanol Production from Residual Biomass” Food Technology and Biotechnology, Vol. 56(2), 2018. https://doi.org/10.17113/ftb.56.02.18.5428
-
A.W. Bhutto, K. Qureshi, K. Harijan, R. Abro, T. Abbas, A.A. Bazmi, S. Karim, and G. Yu, “Insight into progress in pre-treatment of lignocellulosic biomass,” Energy, Elsevier, Vol. 122(C), pp. 724-745, 2017. https://doi.org/10.1016/j.energy.2017.01.005
-
J. Baruah, B.K. Nath, R. Sharma, S. Kumar, R.C. Deka, D.C. Baruah, E..Kalita, “Recent Trends in the Pretreatment of Lignocellulosic Biomass for Value-Added Products,” Frontiers in Energy Research, Vol. 6 (141), pp. 1-19, 2018. https://doi.org/10.3389/fenrg.2018.00141
-
M. Saghir, S. Zafar, A. Tahir, M. Ouadi, B. Siddique, A. Hornung, “Unlocking the Potential of Biomass Energy in Pakistan,” Front. Energy Research, pp. 7-24, 2019. https://doi.org/10.3389/fenrg.2019.00024
-
M. Mandø, “Direct combustion of biomass. Biomass Combustion Science,” Technology and Engineering, pp. 61-83. https://doi.org/10.1533/9780857097439.2.61
-
A. Garba, “Biomass Conversion Technologies for Bioenergy Generation: An Introduction,” Biotechnological Applications of Biomass, IntechOpen, 2021. https://doi.org/10.5772/intechopen.93669
-
L.J.R. Nunes, J.C.O. Matias, and J.P.S. Catalão. “Biomass combustion systems: A review on the physical and chemical properties of the ashes,” Renewable and Sustainable Energy Reviews, Vol. 53, pp. 235-242, 2016. https://doi.org/10.1016/j.rser.2015.08.053
-
Y. Hu, A. Bassi, and C. Xu (Charles), “Energy From Biomass,” Future Energy, Third Edition, pp. 447-471, 2020. https://doi.org/10.1016/b978-0-08-102886-5.00021-9
-
A. Demirbas and G. Arin, “An Overview of Biomass Pyrolysis,” Energy Sources, Vol. 24(5), pp. 471-482, 2002. https://doi.org/10.1080/00908310252889979
-
C. Pal, K. Asiani, S. Arya, C. Rensing, D.J. Stekel, D.J. Larsson, and J.L. Hobman, “Metal resistance and its association with antibiotic resistance,” Advances in microbial physiology, Vol. 70, pp. 261-313, 2017. https://doi.org/10.1016/bs.ampbs.2017.02.001
-
J. Laesecke, N. Ellis, and P. Kirchen, “Production, analysis and combustion characterization of biomass fast pyrolysis oil–Biodiesel blends for use in diesel engines,” Fuel. Vol. 199, pp. 346-357, 2017. https://doi.org/10.1016/j.fuel.2017.01.093
-
R. Bala, V. Gautam, and M.K. Mondal, “Improved biogas yield from organic fraction of municipal solid waste as preliminary step for fuel cell technology and hydrogen generation,” International Journal of Hydrogen Energy, Vol. 44(1), pp. 164-73, 2019. https://doi.org/10.1016/j.ijhydene.2018.02.072
-
R. Bharati and S. Suresh, “A review on nano-catalyst from waste for production of biofuel-via-bioenergy,” InBiofuels and Bioenergy (BICE2016) International Conference, Bhopal, India, Springer International Publishing, pp. 25-32, 2017. https://doi.org/10.1007/978-3-319-47257-7_3
-
T. Sharma, I.G. Hakeem, A.B. Gupta, J. Joshi, K. Shah, A.K. Vuppaladadiyam, and A. Sharma, “Parametric influence of process conditions on thermochemical techniques for biochar production: A state-of-the-art review,” Journal of the Energy Institute, Vol. 7, 101559, 2019. https://doi.org/10.1016/j.joei.2024.101559
-
L. Dorjee, K. Nishmitha, S. Pattanayak, T. Wangmu, S. Meshram, S. Chongtham, and R. Gogoi, “Biochar: A Comprehensive Review on a Natural Approach to Plant Disease Management,” Journal of Pure & Applied Microbiology, Vol. 18(1), 2024. https://doi.org/10.22207/JPAM.18.1.58
-
E. Borri, C. Antonios, P. Valeria, Z. Gabriel, F. Andrea, K. Sotirios, and F. C. Luisa, "Environmental impact of an innovative solar-biomass hybrid system for residential applications," Renewable Energy 239, 122138, 2025. https://doi.org/10.1016/j.renene.2024.122138
-
G. F. Ribeiro, and B. J. Aldo, “Construction of a Roadmap of the Technological Development Barrier and Adaptation of Agricultural Machinery in the Production Chain of Biomass Briquettes and Pellets from Agricultural Waste,”. Available at SSRN: https://ssrn.com/abstract=5084101 or http://dx.doi.org/10.2139/ssrn.5084101
-
K. Shu, B. Guan, Z. Zhuang, J. Chen, L. Zhu L, Z. Ma, Z. Hu, C. Zhu, S. Zhao, H. Dang, T. Zhu, “Reshaping the energy landscape: Explorations and strategic perspectives on hydrogen energy preparation, efficient storage, safe transportation and wide applications,”. International Journal of Hydrogen Energy. Jan 6(9)7, 160-213, 2025. https://doi.org/10.1016/j.ijhydene.2024.11.110
-
K. Roman, and E. Grzegorzewska, “Biomass Briquetting Technology for Sustainable Energy Solutions: Innovations in Forest Biomass Utilization,” Energies, 17(24), 6392, 2024. https://doi.org/10.3390/en17246392