Research Article
BibTex RIS Cite

Designing Graphene-Based Antenna for Terahertz Wave Ablation (TWA) System

Year 2022, , 507 - 514, 31.08.2022
https://doi.org/10.18185/erzifbed.1014513

Abstract

Cancer is one of the most feared health problems today. Studies on cancer diagnosis and treatment are carried out intensively. In this study, a graphene-based antenna is proposed for cancer diagnosis and treatment with THz radiation therapy, which is a relatively new radiation technique. A graphene-based two-layer monopole antenna is designed for 1.65THz operation frequency. To change the bandwidth and radiation pattern without changing the operating frequency, a graphene ring is placed on the SiO2 substrate (2nd layer).Antenna performance is analyzed for reflection coefficient, realized gain, E-Field. The proposed antenna is obtained approximately %4 bandwidth. A peak gain of 8.52 dB is achieved at 1.65THz within the bandwidth. Antenna design is done in Computer Simulation Technology Studio Suite. It is expected that the results of the THz antenna will make a significant contribution to healthcare applications. The cancer treatment with THz is cheap, easy, and can be used without causing discomfort in patients.

Supporting Institution

The Scientific and Technological Research Council of Turkey (TÜBİTAK)

Project Number

121N090

References

  • Afroozeh, A., Innate, K., Ali, J., & Yupapin, P. (2013). THz frequency generation using Gaussian pulse for medical applications. Optik, 124(5), 416-419.
  • Anand, S., Kumar, D. S., Wu, R. J., & Chavali, M. (2014). Graphene nanoribbon based terahertz antenna on polyimide substrate. Optik, 125(19), 5546-5549.
  • Cao, Y. S., Jiang, L. J., & Ruehli, A. E. (2016). An equivalent circuit model for graphene-based terahertz antenna using the PEEC method. IEEE Transactions on Antennas and Propagation, 64(4), 1385-1393.
  • Filter, R., Farhat, M., Steglich, M., Alaee, R., Rockstuhl, C., & Lederer, F. (2013). Tunable graphene antennas for selective enhancement of THz-emission. Optics express, 21(3), 3737-3745.
  • Geim, A. K., & Novoselov, K. S. (2010). The rise of graphene. In Nanoscience and technology: a collection of reviews from nature journals (pp. 11-19): World Scientific.
  • Habib, A. (2020). Ultra low loss and dispersion flattened microstructure fiber for terahertz applications. Brill. Eng, 1, 1-5. Hartnagel, H. L., & Sirkeli, V. (2019).
  • The use of metal oxide semiconductors for THz spectroscopy of biological applications. Paper presented at the International Conference on Nanotechnologies and Biomedical Engineering.
  • Jin, J., Cheng, Z., Chen, J., Zhou, T., Wu, C., & Xu, C. (2020). Reconfigurable terahertz Vivaldi antenna based on a hybrid graphene‐metal structure. International Journal of RF and Microwave Computer‐Aided Engineering, 30(5), e22175.
  • Khan, M. A. K., Shaem, T. A., & Alim, M. A. (2020). Graphene patch antennas with different substrate shapes and materials. Optik, 202, 163700.
  • Kumar, M., Goel, S., Rajawat, A., & Gupta, S. H. (2020). Design of optical antenna operating at terahertz frequency for in-vivo cancer detection. Optik, 216, 164910.
  • Moradi, K., Pourziad, A., & Nikmehr, S. (2021). A frequency reconfigurable microstrip antenna based on graphene in Terahertz Regime. Optik, 228, 166201.
  • Pascuallaguna, A., Karatsu, K., Thoen, D., Murugesan, V., Buijtendorp, B., Endo, A., & Baselmans, J. (2021). Terahertz Band-Pass Filters for Wideband Superconducting On-chip Filter-bank Spectrometers. IEEE Transactions on Terahertz Science and Technology.
  • Rodrigues, N. R., de Oliveira, R., & Dmitriev, V. (2018). Smart terahertz graphene antenna: operation as an omnidirectional dipole and as a reconfigurable directive antenna. IEEE Antennas and Propagation Magazine, 60(5), 26-40.
  • Son, J.-H., Oh, S. J., & Cheon, H. (2019). Potential clinical applications of terahertz radiation. Journal of Applied Physics, 125(19), 190901. Tamagnone, M., & Mosig, J. R. (2016). Theoretical limits on the efficiency of reconfigurable and nonreciprocal graphene antennas. IEEE Antennas and Wireless Propagation Letters, 15, 1549-1552.
  • Varshney, G. (2020). Reconfigurable graphene antenna for THz applications: a mode conversion approach. Nanotechnology, 31(13), 135208.
  • Varshney, G., Gotra, S., Pandey, V., & Yaduvanshi, R. S. (2019). Proximity-coupled two-port multi-input-multi-output graphene antenna with pattern diversity for THz applications. Nano Communication Networks, 21, 100246.
  • Varshney, G., Verma, A., Pandey, V., Yaduvanshi, R., & Bala, R. (2018). A proximity coupled wideband graphene antenna with the generation of higher order TM modes for THz applications. Optical Materials, 85, 456-463.
  • Yao, Y., Kats, M. A., Genevet, P., Yu, N., Song, Y., Kong, J., & Capasso, F. (2013). Broad electrical tuning of graphene-loaded plasmonic antennas. Nano letters, 13(3), 1257-1264.
  • Zhou, T., Cheng, Z., Zhang, H., Le Berre, M., Militaru, L., & Calmon, F. (2014). Miniaturized tunable terahertz antenna based on graphene. Microwave and Optical Technology Letters, 56(8), 1792-1794.
Year 2022, , 507 - 514, 31.08.2022
https://doi.org/10.18185/erzifbed.1014513

Abstract

Project Number

121N090

References

  • Afroozeh, A., Innate, K., Ali, J., & Yupapin, P. (2013). THz frequency generation using Gaussian pulse for medical applications. Optik, 124(5), 416-419.
  • Anand, S., Kumar, D. S., Wu, R. J., & Chavali, M. (2014). Graphene nanoribbon based terahertz antenna on polyimide substrate. Optik, 125(19), 5546-5549.
  • Cao, Y. S., Jiang, L. J., & Ruehli, A. E. (2016). An equivalent circuit model for graphene-based terahertz antenna using the PEEC method. IEEE Transactions on Antennas and Propagation, 64(4), 1385-1393.
  • Filter, R., Farhat, M., Steglich, M., Alaee, R., Rockstuhl, C., & Lederer, F. (2013). Tunable graphene antennas for selective enhancement of THz-emission. Optics express, 21(3), 3737-3745.
  • Geim, A. K., & Novoselov, K. S. (2010). The rise of graphene. In Nanoscience and technology: a collection of reviews from nature journals (pp. 11-19): World Scientific.
  • Habib, A. (2020). Ultra low loss and dispersion flattened microstructure fiber for terahertz applications. Brill. Eng, 1, 1-5. Hartnagel, H. L., & Sirkeli, V. (2019).
  • The use of metal oxide semiconductors for THz spectroscopy of biological applications. Paper presented at the International Conference on Nanotechnologies and Biomedical Engineering.
  • Jin, J., Cheng, Z., Chen, J., Zhou, T., Wu, C., & Xu, C. (2020). Reconfigurable terahertz Vivaldi antenna based on a hybrid graphene‐metal structure. International Journal of RF and Microwave Computer‐Aided Engineering, 30(5), e22175.
  • Khan, M. A. K., Shaem, T. A., & Alim, M. A. (2020). Graphene patch antennas with different substrate shapes and materials. Optik, 202, 163700.
  • Kumar, M., Goel, S., Rajawat, A., & Gupta, S. H. (2020). Design of optical antenna operating at terahertz frequency for in-vivo cancer detection. Optik, 216, 164910.
  • Moradi, K., Pourziad, A., & Nikmehr, S. (2021). A frequency reconfigurable microstrip antenna based on graphene in Terahertz Regime. Optik, 228, 166201.
  • Pascuallaguna, A., Karatsu, K., Thoen, D., Murugesan, V., Buijtendorp, B., Endo, A., & Baselmans, J. (2021). Terahertz Band-Pass Filters for Wideband Superconducting On-chip Filter-bank Spectrometers. IEEE Transactions on Terahertz Science and Technology.
  • Rodrigues, N. R., de Oliveira, R., & Dmitriev, V. (2018). Smart terahertz graphene antenna: operation as an omnidirectional dipole and as a reconfigurable directive antenna. IEEE Antennas and Propagation Magazine, 60(5), 26-40.
  • Son, J.-H., Oh, S. J., & Cheon, H. (2019). Potential clinical applications of terahertz radiation. Journal of Applied Physics, 125(19), 190901. Tamagnone, M., & Mosig, J. R. (2016). Theoretical limits on the efficiency of reconfigurable and nonreciprocal graphene antennas. IEEE Antennas and Wireless Propagation Letters, 15, 1549-1552.
  • Varshney, G. (2020). Reconfigurable graphene antenna for THz applications: a mode conversion approach. Nanotechnology, 31(13), 135208.
  • Varshney, G., Gotra, S., Pandey, V., & Yaduvanshi, R. S. (2019). Proximity-coupled two-port multi-input-multi-output graphene antenna with pattern diversity for THz applications. Nano Communication Networks, 21, 100246.
  • Varshney, G., Verma, A., Pandey, V., Yaduvanshi, R., & Bala, R. (2018). A proximity coupled wideband graphene antenna with the generation of higher order TM modes for THz applications. Optical Materials, 85, 456-463.
  • Yao, Y., Kats, M. A., Genevet, P., Yu, N., Song, Y., Kong, J., & Capasso, F. (2013). Broad electrical tuning of graphene-loaded plasmonic antennas. Nano letters, 13(3), 1257-1264.
  • Zhou, T., Cheng, Z., Zhang, H., Le Berre, M., Militaru, L., & Calmon, F. (2014). Miniaturized tunable terahertz antenna based on graphene. Microwave and Optical Technology Letters, 56(8), 1792-1794.
There are 19 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Makaleler
Authors

Miraç Dilruba Geyikoğlu 0000-0003-2399-4741

Hilal Koç 0000-0003-2382-1736

Bülent Çavuşoğlu 0000-0002-8974-8191

Mehmet Ertugrul 0000-0003-1921-7704

Karim Abbasian 0000-0002-7448-0292

Project Number 121N090
Publication Date August 31, 2022
Published in Issue Year 2022

Cite

APA Geyikoğlu, M. D., Koç, H., Çavuşoğlu, B., Ertugrul, M., et al. (2022). Designing Graphene-Based Antenna for Terahertz Wave Ablation (TWA) System. Erzincan University Journal of Science and Technology, 15(2), 507-514. https://doi.org/10.18185/erzifbed.1014513