Research Article
BibTex RIS Cite

Investigation of the Effects of Optical Models on the Production Cross–Section Calculations of 22,24Na Radioisotopes with some (d,x) and (α,x) Reactions

Year 2022, , 885 - 899, 30.12.2022
https://doi.org/10.18185/erzifbed.1180889

Abstract

It is well recognized that the outcomes of investigations conducted in the field of basic sciences, as well as the achievements gained over the period of these studies, mediate effective and useful outcomes not only for basic sciences, but also for many other fields as diverse from engineering to medicine. In this regard, theoretical researches on the production routes of various radioisotopes that could be implemented in a numerous of fields ensure that physics and other associated areas interact on a common ground. Taking this fact into account as the motivation, the goal of this study is set to investigate how various deuteron and alpha optical models impact the cross–section calculations of 22,24Na radioisotopes, which are known to be utilized in medical applications. The TALYS (v1.95) code was utilized in the calculations, which allows for the use of five different deuteron and eight different alpha optical model alternatives. The obtained results were not only visually compared to the existing experimental data in the literature, but also quantitatively by performing mean weighted deviation and relative variance analyses.

References

  • [1] Özdoğan, H., Şekerci, M., Kaplan, A. (2020). An investigation on the effects of some theoretical models in the cross-section calculations of 50,52,53,54Cr(α,x) reactions. Physics of Atomic Nuclei, 83, 820–827.
  • [2] Yiğit, M., Tel, E. (2014). Theoretical study of deuteron induced reactions on 6,7Li, 9Be and 19F targets. Kerntechnik, 79, 63-69.
  • [3] Kavun. Y., Aydın, A., Tel, E. (2020). A new formulae study for the (n,2p) reaction cross-section systematics at 14–15 MeV. Applied Radiation and Isotopes, 163, 109218.
  • [4] Tel, E., Akca, S., Kara, A., Yiğit M., Aydın A. (2013). (p,α) reaction cross sections calculations of Fe and Ni target nuclei using new developed semi-empirical formula. Journal of Fusion Energy, 32, 531–535.
  • [5] Artun, O. (2018). Calculation of productions of PET radioisotopes via phenomenological level density models. Radiation Physics and Chemistry, 149, 73-83.
  • [6] Yiğit, M., Bostan, S. N. (2019). Study on cross section calculations for (n,p) nuclear reactions of cadmium isotopes. Applied Radiation and Isotopes, 154, 108868.
  • [7] Artun, O. (2019). Calculation of productions of medical 201Pb, 198Au, 186Re, 111Ag, 103Pd, 90Y, 89Sr, 77Kr, 77As, 67Cu, 64Cu, 47Sc and 32P nuclei used in cancer therapy via phenomenological and microscopic level density models. Applied Radiation and Isotopes, 144, 64-79.
  • [8] Akkoyun, S. (2020). Estimation of fusion reaction cross-sections by artificial neural networks. Nuclear Instruments and Methods in Physics Research Section B, 462, 51-54.
  • [9] Özdoğan, H., Üncü, Y. A., Şekerci, M., Kaplan, A. (2021). Estimations of level density parameters by using artificial neural network for phenomenological level density models. Applied Radiation and Isotopes, 169, 109583.
  • [10] Özdoğan, H., Üncü, Y. A., Şekerci, M., Kaplan, A. (2021). A study on the estimations of (n, t) reaction cross-sections at 14.5 MeV by using artificial neural network. Modern Physics Letters A, 36(23), 2150168.
  • [11] Özdoğan, H., Üncü, Y. A., Karaman, O., Şekerci, M., Kaplan, A. (2021). Estimations of giant dipole resonance parameters using artificial neural network. Applied Radiation and Isotopes, 169, 109581.
  • [12] Şekerci, M., Özdoğan, H., Kaplan, A. (2022). Effects of combining some theoretical models in the cross-section calculations of some alpha-induced reactions for natSb. Applied Radiation and Isotopes, 186, 110255.
  • [13] Özdoğan, H., Üncü, Y. A., Şekerci, M., Kaplan, A. (2022). Mass excess estimations using artificial neural networks. Applied Radiation and Isotopes, 184, 110162.
  • [14] Aydin, A., Tel, E., Kaplan, A., Büyükuslu, H. (2010). Pre-equilibrium cross section calculations in alpha induced reactions on 65Cu and 209Bi, Annals of Nuclear Energy, 37(10), 1316-1320.
  • [15] Kaplan, A., Büyükuslu, H., Aydin, A., Tel, E., Yıldırım, G., Bölükdemir, M. H. (2010). Excitation Functions of Some Neutron Production Targets on (d,2n) Reactions, Journal of Fusion Energy, 29, 181-187.
  • [16] Büyükuslu, H., Kaplan, A., Tel, E., Aydin, A., Yıldırım, G. (2010). Neutron Emission Spectra of 104,105,106,108,110Pd Isotopes for (p,xn) Reactions at 21.6 MeV Proton Incident Energy, Journal of Fusion Energy, 29, 41-48.
  • [17] Broeders, C. H. M., Konobeyev, A. Yu., Korovin, Yu. A., Lunev, V. P., Blann, M. (2006). “ALICEIASH - Pre-compound and evaporation model code system for calculation of excitation functions, energy and angular distributions of emitted particles in nuclear reactions at intermediate energies”. FZK 7183.
  • [18] Gudima, K. K., Mashnik, S. G., Toneev, V. D. (1983). Cascade-exciton model of nuclear reactions, Nuclear Physics A, 401(2), 329–361.
  • [19] Mashnik, S. G. (1995). User Manual for the Code CEM95, Joint Institute for Nuclear Research, Dubna, Moscow.
  • [20] Capote, R., Lopez, R., Herrera, E., Piris, M., Osorio, V. (1991). Analysis of experimental data on neutron induced reactions and development of PCROSS code for the calculation of the differential preequilibrium spectra, INDC(NDS)-247/L, International Atomic Energy Agency (IAEA), Vienne.
  • [21] Herman, M., Capote, R., Carlson, B. V., Obložinský, P., Sin, M., Trkov, A., Wienke, H., Zerkin, V. (2007). EMPIRE: Nuclear Reaction Model Code System for Data Evaluation. Nuclear Data Sheets, 108(12), 2655-2715.
  • [22] Koning A. J., Hilaire, S., Duijvestijn, M. C. (2008). TALYS-1.0, Proceedings of the International Conference on Nuclear Data for Science and Technology, April 22-27, 2007, Nice, France, editors Bersillon, O., Gunsing, F., Bauge, E., Jacqmin, R., Leray, S., EDP Sciences, 2008, p. 211-214.
  • [23] Koning, A., Hilaire, S., Goriely, S. (2019). TALYS–1.95 A Nuclear Reaction Program, User Manual, first ed. NRG, The Netherlands.
  • [24] Tel, E., Aydin, E. G., Kaplan, A., Aydin, A. (2009). New Calculations of Cyclotron Production Cross Sections of Some Positron Emitting Radioisotopes in Proton Induced Reactions. Indian Journal of Physics, 83(2), 193-212.
  • [25] Aydin, A., Tel, E., Pekdoğan, H., Kaplan, A. (2012). Nuclear Model Calculations on the Production of 125,123Xe and 133,131,129,128Ba Radioisotopes. Physics of Atomic Nuclei, 75(3), 310-314.
  • [26] Tel, E., Aydın, A., Kara, A., Kaplan, A. (2012). Investigation of Ground State Features for Some Medical Radionuclides Using an effective Nuclear Force. Kerntechnik, 77 (1), 50-55.
  • [27] Canbula, B. (2017). Bazı tellür izotoplarının nötron yakalama tesir kesiti analizi, Celal Bayar Üniversitesi Fen Bilimleri Dergisi, 13(2), 445-455.
  • [28] Kurenkov, N. V., Lunev, V. P., Shubin, Yu. N. (1999). Evaluation of calculation methods for excitation functions for production of radioisotopes of iodine, thallium and other elements, Applied Radiation and Isotopes, 50(3), 541-549.
  • [29] Audi, G., Bersillon, O., Blachot, J., Wapstra, A. H. (2003). The Nubase evaluation of nuclear and decay properties, Nuclear Physics A, 729(1), 3–128.
  • [30] Haynes, W. M., Lide, D.R., Bruno, T. J. (2017). CRC Handbook of Chemistry and Physics, 97th ed., CRC Press: Boca Raton, FL.
  • [31] Greenwood, N. N., Earnshaw, A. (1997). Chemistry of the Elements, 2nd Edition, Butterworth-Heinemann.
  • [32] Kondev, F. G., Wang, M., Huang, W. J., Naimi, S., Audi, G. (2021). The NUBASE2020 evaluation of nuclear physics properties, Chinese Physics C, 45(3), 030001.
  • [33] Al Faraj, A., Alotaibi, B., Pasha Shaik, A., Shamma, K., Al Jammaz, I., Gerl, J. (2015). Sodium-22-radiolabeled silica nanoparticles as new radiotracer for biomedical applications: in vivo positron emission tomography imaging, biodistribution, and biocompatibility. International Journal of Nanomedicine, 6293-6302.
  • [34] Akamatsu, G., Yoshida, E., Mikamoto, T., Maeda, T., Wakizaka, H., Tashima, H., Wakitani, Y., Matsumoto, M., Yamaya, T. (2019). Development of sealed 22Na phantoms for PET system QA/QC: uniformity and stability evaluation. 2019 IEEE Nuclear Science Symposium and Medical Imaging Conference (NSS/MIC).
  • [35] Murata, T., Miwa, K., Miyaji, N., Wagatsuma, K., Hasegawa, T., Oda, K., Umeda, T., Iimori, T., Masuda, Y., Terauchi, T., Koizumi, M. (2016). Evaluation of spatial dependence of point spread function-based PET reconstruction using a traceable point-like 22Na source. EJNMMI Physics, 3(1), 26.
  • [36] Lees, M., Dombrowski, J., Botkin, C., Hubble, W., Nguyen, N., Osman, M. (2008). Utilization of 22Na PET markers in radiation therapy planning: Initial experience. Journal of Nuclear Medicine, 49(1), 431.
  • [37] Laing, P. G., Ferguson Jr, A. B. (1958). Sodium-24 as an indicator of the blood supply of bone. Nature, 182(4647), 1442-1443.
  • [38] Scanlon, E. F., Milland, F. P., Hellman, L. (1990). Sodium-24 studies in postmastectomy lymphedema. Journal of Surgical Oncology, 44(1), 47-51.
  • [39] Kety, S. S. (1948). Quantitative measurement of regional circulation by the clearance of radioactive sodium. The American Journal of the Medical Sciences, 215 (3), 352.
  • [40] Moulton, R., Spencer, A. G., Willoughby, D. A. (1958). Noradrenaline sensitivity in hypertension measured with a radioactive sodium technique. British Heart Journal, 20(2), 224-228.
  • [41] Gülümser, T., Kaplan, A. (2021). A theoretical study on the production cross–section calculations for 24Na medical isotope. Erzincan Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 14(2), 802-813.
  • [42] Guo, S., Zhang, J., Shi, L., Chen, Q., Chen, W. K. (2022). Research on the application of 22Na radiolocation detection technology in advanced manufacturing process control. Kerntechnik, 87(3), 316-322.
  • [43] Yoshida, A., Kambara, T., Nakao, A., Uemoto, R., Uno, H., Nagano, A., Yamaguchi, H., Nakao, T., Kahl, D., Yanagisawa, Y., Kameda, D., Ohnishi, T., Fukuda, N., Kubo, T. (2013). Wear diagnostics of industrial material using RI beams of 7Be and 22Na. Nuclear Instruments and Methods in Physics Research Section B, 317, 785-788.
  • [44] Pant, H. J., Sharma, V. K., Nair, A. G. C., Tomar, B. S., Nathaniel, T. N., Reddy, A. V. R., Singh, G. (2009). Application of 140La and 24Na as intrinsic radiotracers for investigating catalyst dynamics in FCCUs. Applied Radiation and Isotopes, 67(9), 1591–1599.
  • [45] Epp, E. M., Griffin, H. C. (2003). Use of 24Na as a γ-ray calibration source above 3MeV. Nuclear Instruments and Methods in Physics Research Section A, 505(1-2), 9-12.
  • [46] Raynal, J. (1994). Notes on ECIS94 CEA Saclay Report No. CEA-N-2772.
  • [47] Koning, A. J., Rochman, D. (2012). Modern Nuclear Data Evaluation with the TALYS Code System, Nuclear Data Sheets, 113(12), 2841-2934.
  • [48] Watanabe, S. (1958). High energy scattering of deuterons by complex nuclei. Nuclear Physics, 8, 484-492.
  • [49] Daehnick, W. W., Childs, J. D., Vrcelj, Z. (1980). Global optical model potential for elastic deuteron scattering from 12 to 90 MeV. Physical Review C, 21, 2253-2274.
  • [50] Bojowald, J., Machner, H., Nann, H., Oelert, W., Rogge, M., Turek, P. (1988). Elastic deuteron scattering and optical model parameters at energies up to 100 MeV. Physical Review C, 38, 1153-1163.
  • [51] Han, Y., Shi, Y., Shen, Q. (2006). Deuteron global optical model potential for energies up to 200 MeV. Physical Review C, 74, 044615.
  • [52] An, H., Cai, C. (2006). Global deuteron optical model potential for the energy range up to 183 MeV. Physical Review C, 73, 054605.
  • [53] Avrigeanu, V., Avrigeanu, M., Mănăilescu, C. (2014). Further explorations of the α-particle optical model potential at low energies for the mass range A≈45–209. Physical Review C, 90, 044612.
  • [54] Koning, A. J., Delaroche, J. P. (2003). Local and global nucleon optical models from 1 keV to 200 MeV. Nuclear Physics A, 713, 231-310.
  • [55] McFadden, L., Satchler, G. R. (1966). Optical-model analysis of the scattering of 24.7 MeV alpha particles. Nuclear Physics, 84, 177–200
  • [56] Demetriou, P., Grama, C., Goriely, S. (2002). Improved global α-optical model potentials at low energies. Nuclear Physics A, 707, 253–276.
  • [57] Nolte, M., Machner, H., Bojowald, J. (1987). Global optical potential for α particles with energies above 80 MeV. Physical Review C, 36, 1312-1316.
  • [58] Avrigeanu, V., Hodgson, P. E., Avrigeanu, M. (1994). Global optical potentials for emitted alpha particles. Physical Review C, 49, 2136-2141.
  • [59] Otuka, N., Dupont, E., Semkova, V., Pritychenko, B., Blokhin, A. I., Aikawa, M., Babykina, S., Bossant, M., Chen, G., Dunaeva, S., Forrest, R. A., Fukahori, T., Furutachi, N., Ganesan, S., Ge, Z., Gritzay, O. O., Herman, M., Hlavač, S., Katō, K., Lalremruata, B., Lee, Y. O., Makinaga, A., Matsumoto, K., Mikhaylyukova, M., Pikulina, G., Pronyaev, V. G., Saxena, A., Schwerer, O., Simakov, S. P., Soppera, N., Suzuki, R., Takács, S., Tao, X., Taova, S., Tárkányi, F., Varlamov, V. V., Wang, J., Yang, S. C., Zerkin, V. (2014). Towards a More Complete and Accurate Experimental Nuclear Reaction Data Library (EXFOR): International Collaboration Between Nuclear Reaction Data Centres (NRDC). Nuclear Data Sheets, 120, 272-276.
  • [60] Zerkin, V. V., Pritychenko, B. (2018). The experimental nuclear reaction data (EXFOR): Extended computer database and Web retrieval system. Nuclear Instruments and Methods in Physics Research Section A, 888, 31-43.
  • [61] Hermanne, A., Takács, S., Tárkányi, F., Adam-Rebeles, R., Ignatyuk, A. (2012). Excitation functions for 7Be, 22,24Na production in Mg and Al by deuteron irradiations up to 50MeV. Applied Radiation and Isotopes, 70(12), 2763-2772.
  • [62] Vlasov, N. A., Kalinin, S. P., Ogloblin, A. A., Pankratov, V. M., Rudakov, V. P., Serikov, I. N., Sidorov, V. A. (1957). Excitation functions for the reactions 24Mg(d,a)22Na, 54Fe(d,a)52Mn, 54Fe(d,n)55Co, 66Zn(d,2n)66Ga. Atomnaya Energiya, 12, 169.
  • [63] Wilson, R. L., Frantsvog, D. J., Kunselman, A. R., Détraz, C., Zaidins, C. S. (1976). Excitation functions of reactions induced by 1H and 2H ions on natural Mg, Al, and Si. Physical Review C, 13, 976 - 983.
  • [64] Lange, H.-J., Hahn, T., Michel, R., Schiekel, T., Rösel, R., Herpers, U., Hofmann, H.-J., Dittrich-Hannen, B., Suter, M., Wölfli, W., Kubik, P. W. (1995). Production of residual nuclei by α-induced reactions on C, N, O, Mg, Al and Si up to 170 MeV. Applied Radiation and Isotopes, 46(2), 93-112.
  • [65] Nozaki, T., Furukawa, M., Kume, S., Seki, R. (1975). Production of 28Mg by triton and α-particle induced reactions. Applied Radiation and Isotopes, 26(1), 17-20.

Bazı (d,x) ve (α,x) Reaksiyonlarıyla 22,24Na Radyoizotoplarının Üretim Tesir Kesiti Hesaplamalarına Optik Modellerin Etkilerinin İncelenmesi

Year 2022, , 885 - 899, 30.12.2022
https://doi.org/10.18185/erzifbed.1180889

Abstract

Temel bilimler alanında yürütülen araştırmaların sonuçlarının ve bu çalışmalarda elde edilen kazanımların sadece temel bilimler için değil, aynı zamanda tıptan mühendisliğe kadar çeşitli alanlarda da etkili ve faydalı sonuçlara aracılık ettiği iyi bilinmektedir. Bu bağlamda, birçok alanda uygulanabilecek çeşitli radyoizotopların üretim yollarının teorik olarak araştırılması, fizik ve diğer ilgili alanların ortak bir paydada etkileşimini sağlamaktadır. Motivasyon olarak bu gerçeği göz önünde bulundurarak bu çalışmanın amacı, çeşitli döteron ve alfa optik modellerin tıbbi uygulamalarda kullanıldığı bilinen 22,24Na radyoizotoplarının tesir kesiti hesaplamalarını nasıl etkilediğini araştırmak olarak belirlenmiştir. Hesaplamalarda beş farklı döteron ve sekiz farklı alfa optik model alternatifinin kullanımına olanak sağlayan TALYS (v1.95) kodu kullanılmıştır. Elde edilen sonuçlar literatürdeki mevcut deneysel verilerle sadece görsel olarak değil, ortalama ağırlıklı sapma ve bağıl varyans analizleri yapılarak nicel olarak da karşılaştırılmıştır.

References

  • [1] Özdoğan, H., Şekerci, M., Kaplan, A. (2020). An investigation on the effects of some theoretical models in the cross-section calculations of 50,52,53,54Cr(α,x) reactions. Physics of Atomic Nuclei, 83, 820–827.
  • [2] Yiğit, M., Tel, E. (2014). Theoretical study of deuteron induced reactions on 6,7Li, 9Be and 19F targets. Kerntechnik, 79, 63-69.
  • [3] Kavun. Y., Aydın, A., Tel, E. (2020). A new formulae study for the (n,2p) reaction cross-section systematics at 14–15 MeV. Applied Radiation and Isotopes, 163, 109218.
  • [4] Tel, E., Akca, S., Kara, A., Yiğit M., Aydın A. (2013). (p,α) reaction cross sections calculations of Fe and Ni target nuclei using new developed semi-empirical formula. Journal of Fusion Energy, 32, 531–535.
  • [5] Artun, O. (2018). Calculation of productions of PET radioisotopes via phenomenological level density models. Radiation Physics and Chemistry, 149, 73-83.
  • [6] Yiğit, M., Bostan, S. N. (2019). Study on cross section calculations for (n,p) nuclear reactions of cadmium isotopes. Applied Radiation and Isotopes, 154, 108868.
  • [7] Artun, O. (2019). Calculation of productions of medical 201Pb, 198Au, 186Re, 111Ag, 103Pd, 90Y, 89Sr, 77Kr, 77As, 67Cu, 64Cu, 47Sc and 32P nuclei used in cancer therapy via phenomenological and microscopic level density models. Applied Radiation and Isotopes, 144, 64-79.
  • [8] Akkoyun, S. (2020). Estimation of fusion reaction cross-sections by artificial neural networks. Nuclear Instruments and Methods in Physics Research Section B, 462, 51-54.
  • [9] Özdoğan, H., Üncü, Y. A., Şekerci, M., Kaplan, A. (2021). Estimations of level density parameters by using artificial neural network for phenomenological level density models. Applied Radiation and Isotopes, 169, 109583.
  • [10] Özdoğan, H., Üncü, Y. A., Şekerci, M., Kaplan, A. (2021). A study on the estimations of (n, t) reaction cross-sections at 14.5 MeV by using artificial neural network. Modern Physics Letters A, 36(23), 2150168.
  • [11] Özdoğan, H., Üncü, Y. A., Karaman, O., Şekerci, M., Kaplan, A. (2021). Estimations of giant dipole resonance parameters using artificial neural network. Applied Radiation and Isotopes, 169, 109581.
  • [12] Şekerci, M., Özdoğan, H., Kaplan, A. (2022). Effects of combining some theoretical models in the cross-section calculations of some alpha-induced reactions for natSb. Applied Radiation and Isotopes, 186, 110255.
  • [13] Özdoğan, H., Üncü, Y. A., Şekerci, M., Kaplan, A. (2022). Mass excess estimations using artificial neural networks. Applied Radiation and Isotopes, 184, 110162.
  • [14] Aydin, A., Tel, E., Kaplan, A., Büyükuslu, H. (2010). Pre-equilibrium cross section calculations in alpha induced reactions on 65Cu and 209Bi, Annals of Nuclear Energy, 37(10), 1316-1320.
  • [15] Kaplan, A., Büyükuslu, H., Aydin, A., Tel, E., Yıldırım, G., Bölükdemir, M. H. (2010). Excitation Functions of Some Neutron Production Targets on (d,2n) Reactions, Journal of Fusion Energy, 29, 181-187.
  • [16] Büyükuslu, H., Kaplan, A., Tel, E., Aydin, A., Yıldırım, G. (2010). Neutron Emission Spectra of 104,105,106,108,110Pd Isotopes for (p,xn) Reactions at 21.6 MeV Proton Incident Energy, Journal of Fusion Energy, 29, 41-48.
  • [17] Broeders, C. H. M., Konobeyev, A. Yu., Korovin, Yu. A., Lunev, V. P., Blann, M. (2006). “ALICEIASH - Pre-compound and evaporation model code system for calculation of excitation functions, energy and angular distributions of emitted particles in nuclear reactions at intermediate energies”. FZK 7183.
  • [18] Gudima, K. K., Mashnik, S. G., Toneev, V. D. (1983). Cascade-exciton model of nuclear reactions, Nuclear Physics A, 401(2), 329–361.
  • [19] Mashnik, S. G. (1995). User Manual for the Code CEM95, Joint Institute for Nuclear Research, Dubna, Moscow.
  • [20] Capote, R., Lopez, R., Herrera, E., Piris, M., Osorio, V. (1991). Analysis of experimental data on neutron induced reactions and development of PCROSS code for the calculation of the differential preequilibrium spectra, INDC(NDS)-247/L, International Atomic Energy Agency (IAEA), Vienne.
  • [21] Herman, M., Capote, R., Carlson, B. V., Obložinský, P., Sin, M., Trkov, A., Wienke, H., Zerkin, V. (2007). EMPIRE: Nuclear Reaction Model Code System for Data Evaluation. Nuclear Data Sheets, 108(12), 2655-2715.
  • [22] Koning A. J., Hilaire, S., Duijvestijn, M. C. (2008). TALYS-1.0, Proceedings of the International Conference on Nuclear Data for Science and Technology, April 22-27, 2007, Nice, France, editors Bersillon, O., Gunsing, F., Bauge, E., Jacqmin, R., Leray, S., EDP Sciences, 2008, p. 211-214.
  • [23] Koning, A., Hilaire, S., Goriely, S. (2019). TALYS–1.95 A Nuclear Reaction Program, User Manual, first ed. NRG, The Netherlands.
  • [24] Tel, E., Aydin, E. G., Kaplan, A., Aydin, A. (2009). New Calculations of Cyclotron Production Cross Sections of Some Positron Emitting Radioisotopes in Proton Induced Reactions. Indian Journal of Physics, 83(2), 193-212.
  • [25] Aydin, A., Tel, E., Pekdoğan, H., Kaplan, A. (2012). Nuclear Model Calculations on the Production of 125,123Xe and 133,131,129,128Ba Radioisotopes. Physics of Atomic Nuclei, 75(3), 310-314.
  • [26] Tel, E., Aydın, A., Kara, A., Kaplan, A. (2012). Investigation of Ground State Features for Some Medical Radionuclides Using an effective Nuclear Force. Kerntechnik, 77 (1), 50-55.
  • [27] Canbula, B. (2017). Bazı tellür izotoplarının nötron yakalama tesir kesiti analizi, Celal Bayar Üniversitesi Fen Bilimleri Dergisi, 13(2), 445-455.
  • [28] Kurenkov, N. V., Lunev, V. P., Shubin, Yu. N. (1999). Evaluation of calculation methods for excitation functions for production of radioisotopes of iodine, thallium and other elements, Applied Radiation and Isotopes, 50(3), 541-549.
  • [29] Audi, G., Bersillon, O., Blachot, J., Wapstra, A. H. (2003). The Nubase evaluation of nuclear and decay properties, Nuclear Physics A, 729(1), 3–128.
  • [30] Haynes, W. M., Lide, D.R., Bruno, T. J. (2017). CRC Handbook of Chemistry and Physics, 97th ed., CRC Press: Boca Raton, FL.
  • [31] Greenwood, N. N., Earnshaw, A. (1997). Chemistry of the Elements, 2nd Edition, Butterworth-Heinemann.
  • [32] Kondev, F. G., Wang, M., Huang, W. J., Naimi, S., Audi, G. (2021). The NUBASE2020 evaluation of nuclear physics properties, Chinese Physics C, 45(3), 030001.
  • [33] Al Faraj, A., Alotaibi, B., Pasha Shaik, A., Shamma, K., Al Jammaz, I., Gerl, J. (2015). Sodium-22-radiolabeled silica nanoparticles as new radiotracer for biomedical applications: in vivo positron emission tomography imaging, biodistribution, and biocompatibility. International Journal of Nanomedicine, 6293-6302.
  • [34] Akamatsu, G., Yoshida, E., Mikamoto, T., Maeda, T., Wakizaka, H., Tashima, H., Wakitani, Y., Matsumoto, M., Yamaya, T. (2019). Development of sealed 22Na phantoms for PET system QA/QC: uniformity and stability evaluation. 2019 IEEE Nuclear Science Symposium and Medical Imaging Conference (NSS/MIC).
  • [35] Murata, T., Miwa, K., Miyaji, N., Wagatsuma, K., Hasegawa, T., Oda, K., Umeda, T., Iimori, T., Masuda, Y., Terauchi, T., Koizumi, M. (2016). Evaluation of spatial dependence of point spread function-based PET reconstruction using a traceable point-like 22Na source. EJNMMI Physics, 3(1), 26.
  • [36] Lees, M., Dombrowski, J., Botkin, C., Hubble, W., Nguyen, N., Osman, M. (2008). Utilization of 22Na PET markers in radiation therapy planning: Initial experience. Journal of Nuclear Medicine, 49(1), 431.
  • [37] Laing, P. G., Ferguson Jr, A. B. (1958). Sodium-24 as an indicator of the blood supply of bone. Nature, 182(4647), 1442-1443.
  • [38] Scanlon, E. F., Milland, F. P., Hellman, L. (1990). Sodium-24 studies in postmastectomy lymphedema. Journal of Surgical Oncology, 44(1), 47-51.
  • [39] Kety, S. S. (1948). Quantitative measurement of regional circulation by the clearance of radioactive sodium. The American Journal of the Medical Sciences, 215 (3), 352.
  • [40] Moulton, R., Spencer, A. G., Willoughby, D. A. (1958). Noradrenaline sensitivity in hypertension measured with a radioactive sodium technique. British Heart Journal, 20(2), 224-228.
  • [41] Gülümser, T., Kaplan, A. (2021). A theoretical study on the production cross–section calculations for 24Na medical isotope. Erzincan Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 14(2), 802-813.
  • [42] Guo, S., Zhang, J., Shi, L., Chen, Q., Chen, W. K. (2022). Research on the application of 22Na radiolocation detection technology in advanced manufacturing process control. Kerntechnik, 87(3), 316-322.
  • [43] Yoshida, A., Kambara, T., Nakao, A., Uemoto, R., Uno, H., Nagano, A., Yamaguchi, H., Nakao, T., Kahl, D., Yanagisawa, Y., Kameda, D., Ohnishi, T., Fukuda, N., Kubo, T. (2013). Wear diagnostics of industrial material using RI beams of 7Be and 22Na. Nuclear Instruments and Methods in Physics Research Section B, 317, 785-788.
  • [44] Pant, H. J., Sharma, V. K., Nair, A. G. C., Tomar, B. S., Nathaniel, T. N., Reddy, A. V. R., Singh, G. (2009). Application of 140La and 24Na as intrinsic radiotracers for investigating catalyst dynamics in FCCUs. Applied Radiation and Isotopes, 67(9), 1591–1599.
  • [45] Epp, E. M., Griffin, H. C. (2003). Use of 24Na as a γ-ray calibration source above 3MeV. Nuclear Instruments and Methods in Physics Research Section A, 505(1-2), 9-12.
  • [46] Raynal, J. (1994). Notes on ECIS94 CEA Saclay Report No. CEA-N-2772.
  • [47] Koning, A. J., Rochman, D. (2012). Modern Nuclear Data Evaluation with the TALYS Code System, Nuclear Data Sheets, 113(12), 2841-2934.
  • [48] Watanabe, S. (1958). High energy scattering of deuterons by complex nuclei. Nuclear Physics, 8, 484-492.
  • [49] Daehnick, W. W., Childs, J. D., Vrcelj, Z. (1980). Global optical model potential for elastic deuteron scattering from 12 to 90 MeV. Physical Review C, 21, 2253-2274.
  • [50] Bojowald, J., Machner, H., Nann, H., Oelert, W., Rogge, M., Turek, P. (1988). Elastic deuteron scattering and optical model parameters at energies up to 100 MeV. Physical Review C, 38, 1153-1163.
  • [51] Han, Y., Shi, Y., Shen, Q. (2006). Deuteron global optical model potential for energies up to 200 MeV. Physical Review C, 74, 044615.
  • [52] An, H., Cai, C. (2006). Global deuteron optical model potential for the energy range up to 183 MeV. Physical Review C, 73, 054605.
  • [53] Avrigeanu, V., Avrigeanu, M., Mănăilescu, C. (2014). Further explorations of the α-particle optical model potential at low energies for the mass range A≈45–209. Physical Review C, 90, 044612.
  • [54] Koning, A. J., Delaroche, J. P. (2003). Local and global nucleon optical models from 1 keV to 200 MeV. Nuclear Physics A, 713, 231-310.
  • [55] McFadden, L., Satchler, G. R. (1966). Optical-model analysis of the scattering of 24.7 MeV alpha particles. Nuclear Physics, 84, 177–200
  • [56] Demetriou, P., Grama, C., Goriely, S. (2002). Improved global α-optical model potentials at low energies. Nuclear Physics A, 707, 253–276.
  • [57] Nolte, M., Machner, H., Bojowald, J. (1987). Global optical potential for α particles with energies above 80 MeV. Physical Review C, 36, 1312-1316.
  • [58] Avrigeanu, V., Hodgson, P. E., Avrigeanu, M. (1994). Global optical potentials for emitted alpha particles. Physical Review C, 49, 2136-2141.
  • [59] Otuka, N., Dupont, E., Semkova, V., Pritychenko, B., Blokhin, A. I., Aikawa, M., Babykina, S., Bossant, M., Chen, G., Dunaeva, S., Forrest, R. A., Fukahori, T., Furutachi, N., Ganesan, S., Ge, Z., Gritzay, O. O., Herman, M., Hlavač, S., Katō, K., Lalremruata, B., Lee, Y. O., Makinaga, A., Matsumoto, K., Mikhaylyukova, M., Pikulina, G., Pronyaev, V. G., Saxena, A., Schwerer, O., Simakov, S. P., Soppera, N., Suzuki, R., Takács, S., Tao, X., Taova, S., Tárkányi, F., Varlamov, V. V., Wang, J., Yang, S. C., Zerkin, V. (2014). Towards a More Complete and Accurate Experimental Nuclear Reaction Data Library (EXFOR): International Collaboration Between Nuclear Reaction Data Centres (NRDC). Nuclear Data Sheets, 120, 272-276.
  • [60] Zerkin, V. V., Pritychenko, B. (2018). The experimental nuclear reaction data (EXFOR): Extended computer database and Web retrieval system. Nuclear Instruments and Methods in Physics Research Section A, 888, 31-43.
  • [61] Hermanne, A., Takács, S., Tárkányi, F., Adam-Rebeles, R., Ignatyuk, A. (2012). Excitation functions for 7Be, 22,24Na production in Mg and Al by deuteron irradiations up to 50MeV. Applied Radiation and Isotopes, 70(12), 2763-2772.
  • [62] Vlasov, N. A., Kalinin, S. P., Ogloblin, A. A., Pankratov, V. M., Rudakov, V. P., Serikov, I. N., Sidorov, V. A. (1957). Excitation functions for the reactions 24Mg(d,a)22Na, 54Fe(d,a)52Mn, 54Fe(d,n)55Co, 66Zn(d,2n)66Ga. Atomnaya Energiya, 12, 169.
  • [63] Wilson, R. L., Frantsvog, D. J., Kunselman, A. R., Détraz, C., Zaidins, C. S. (1976). Excitation functions of reactions induced by 1H and 2H ions on natural Mg, Al, and Si. Physical Review C, 13, 976 - 983.
  • [64] Lange, H.-J., Hahn, T., Michel, R., Schiekel, T., Rösel, R., Herpers, U., Hofmann, H.-J., Dittrich-Hannen, B., Suter, M., Wölfli, W., Kubik, P. W. (1995). Production of residual nuclei by α-induced reactions on C, N, O, Mg, Al and Si up to 170 MeV. Applied Radiation and Isotopes, 46(2), 93-112.
  • [65] Nozaki, T., Furukawa, M., Kume, S., Seki, R. (1975). Production of 28Mg by triton and α-particle induced reactions. Applied Radiation and Isotopes, 26(1), 17-20.
There are 65 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Makaleler
Authors

Mert Şekerci 0000-0003-0870-0506

Publication Date December 30, 2022
Published in Issue Year 2022

Cite

APA Şekerci, M. (2022). Investigation of the Effects of Optical Models on the Production Cross–Section Calculations of 22,24Na Radioisotopes with some (d,x) and (α,x) Reactions. Erzincan University Journal of Science and Technology, 15(3), 885-899. https://doi.org/10.18185/erzifbed.1180889