Research Article
BibTex RIS Cite

Wideband Polarization Conversion Based on Elliptical-Shaped Metasurface for X-Band Applications

Year 2023, , 928 - 939, 31.12.2023
https://doi.org/10.18185/erzifbed.1217888

Abstract

Burada, geniş bant yansıtıcı doğrusal polarizasyon (LP) ve dairesel polarizasyon (CP) dönüşümlerini gerçekleştirmek için tek katmanlı, ultra ince, çok işlevli ve yüksek verimli bir meta-yüzey sunulmaktadır. Önerilen meta-yüzey, %97'den fazla verimlilikle %55,2'lik (7,89 13,91 GHz) nispi absorpsiyon bant genişliği (RAB) üzerinde doğrusal polarize dalga için mükemmel bir çapraz polarizasyon dönüştürücü görevi görür. Doğrusal polarize dalgaları 7,2–7,36 GHz frekans aralığında başarıyla dairesel polarize dalgalara dönüştürür. Ek olarak, TE ve TM modları için polarizasyon dönüşüm oranı (PCR) verimlilik özellikleri, 450'ye kadar geniş bir geliş açısı ile tüm X bandında korunur. Sunulan polarizasyon dönüştürücü, 0.07λ0 kalınlık ile ultra ince bir özelliğe sahiptir. Kompakt boyutu, açısal kararlılığı, yüksek verimliliği, basit yapısı ve çok işlevliliği nedeniyle bu polarizasyon dönüştürücü, birçok uygulamada polarizasyon manipülasyonu ve iletişim cihazları için önemli bir adaydır.

References

  • [1] Nguyen, T. K. T., Nguyen, T. M., Nguyen, H. Q., Cao, T. N., Le, D. T., Bui, X. K., Bui, S. T., et al. (2021). Simple design of efficient broadband multifunctional polarization converter for X-band applications. Scientific reports, 11(1), 2032.
  • [2] Nguyen, T. Q. H., Nguyen, T. K. T., Nguyen, T. Q. M., Cao, T. N., Phan, H. L., Luong, N. M., Le, D. T., et al. (2021). Simple design of a wideband and wide-angle reflective linear polarization converter based on crescent-shaped metamaterial for Ku-band applications. Optics Communications, 486(1), 126773.
  • [3] Ahmed, F., Khan, M. I., & Tahir, F. A. (2021). A Multi-Functional Polarization Transforming Metasurface for C, X and K band Applications. IEEE Antennas and Wireless Propagation Letters, 1(c), 1.
  • [4] Khan, M. I., Khalid, Z., & Tahir, F. A. (2019). Linear and circular-polarization conversion in X-band using anisotropic metasurface. Scientific Reports, 9(1), 4552.
  • [5] Zheng, Y., Zhou, Y., Gao, J., Cao, X., Yang, H., Li, S., Xu, L., et al. (2017). Ultra-wideband polarization conversion metasurface and its application cases for antenna radiation enhancement and scattering suppression. Scientific Reports, 7(1), 16137.
  • [6] Sun, H., Gu, C., Chen, X., Li, Z., Liu, L., Xu, B., & Zhou, Z. (2017). Broadband and Broad-angle Polarization-independent Metasurface for Radar Cross Section Reduction. Scientific Reports, 7(1), 40782.
  • [7] Choudhury, S., Guler, U., Shaltout, A., Shalaev, V. M., Kildishev, A. V., & Boltasseva, A. (2017). Pancharatnam–Berry Phase Manipulating Metasurface for Visible Color Hologram Based on Low Loss Silver Thin Film. Advanced Optical Materials, 5(10), 1700196.
  • [8] Azizi, M. K., Baudrand, H., Latrach, L., & Gharsallah, A. (2017). Metamaterıal-Based Flat Lens: Wave Concept Iteratıve Process Approach. Progress In Electromagnetics Research C, 75, 13–21.
  • [9] Abdullah, S., Xiao, G., & Amaya, R. E. (2021). A Review on the History and Current Literature of Metamaterials and Its Applications to Antennas & Radio Frequency Identification (RFID) Devices. IEEE Journal of Radio Frequency Identification, 5(4), 427–445.
  • [10] Qiu, P., Qiu, W., Lin, Z., Chen, H., Ren, J., Wang, J.-X., Kan, Q., et al. (2017). Investigation of beam splitter in a zero-refractive-index photonic crystal at the frequency of Dirac-like point. Scientific Reports, 7(1), 9588.
  • [11] Park, J., & Min, B. (2021). Spatiotemporal plane wave expansion method for arbitrary space–time periodic photonic media. Optics Letters, 46(3), 484.
  • [12] Tang, J., Faraz, F., Chen, X., Zhang, Q., Li, Q., Li, Y., & Zhang, S. (2020). A Metasurface Superstrate for Mutual Coupling Reduction of Large Antenna Arrays. IEEE Access, 8, 126859–126867.
  • [13] Qian, J., Gou, P., Pan, H., Zhu, L., Gui, Y. S., Hu, C.-M., & An, Z. (2020). Hybrid perfect metamaterial absorber for microwave spin rectification applications. Scientific Reports, 10(1), 19240.
  • [14] Nguyen, T. M., Nguyen, T. K. T., Phan, D. T., Le, D. T., Vu, D. L., Nguyen, T. Q. H., & Kim, J.-M. (2022). Ultra-Wideband and Lightweight Electromagnetic Polarization Converter Based on Multiresonant Metasurface. IEEE Access, 10, 92097–92104.
  • [15] Gao, X., Han, X., Cao, W.-P., Li, H. O., Ma, H. F., & Cui, T. J. (2015). Ultrawideband and High-Efficiency Linear Polarization Converter Based on Double V-Shaped Metasurface. IEEE Transactions on Antennas and Propagation, 63(8), 3522–3530.
  • [16] Xu, G., Gao, L., Chen, Y., Ding, Y., Wang, J., Fang, Y., Wu, X., et al. (2022). Broadband Polarization Manipulation Based on W-Shaped Metasurface. Frontiers in Materials, 9(3), 1–6.
  • [17] Kamal, B., Chen, J., Yingzeng, Y., Ren, J., Ullah, S., & Khan, W. U. R. (2021). High efficiency and ultra-wideband polarization converter based on an L-shaped metasurface. Optical Materials Express, 11(5), 1343.
  • [18] Mei, Z. L., Ma, X. M., Lu, C., & Zhao, Y. D. (2017). High-efficiency and wide-bandwidth linear polarization converter based on double U-shaped metasurface. AIP Advances, 7(12), 125323.
  • [19] Salman, M. S., Khan, M. I., Tahir, F. A., & Rmili, H. (2020). Multifunctional Single Layer Metasurface Based on Hexagonal Split Ring Resonator. IEEE Access, 8, 28054–28063.
  • [20] Zhao, J., & Cheng, Y. (2016). A high-efficiency and broadband reflective 90° linear polarization rotator based on anisotropic metamaterial. Applied Physics B, 122(10), 255.
  • [21] Xu, J., Li, R., Wang, S., & Han, T. (2018). Ultra-broadband linear polarization converter based on anisotropic metasurface. Optics Express, 26(20), 26235.
  • [22] Lin, B., Huang, W., Guo, J., Wang, Y., Liu, Z., & Ye, H. (2023). A high efficiency ultra-wideband circular-to-linear polarization conversion metasurface. Optics Communications, 529(2), 129102.
  • [23] Faraz, Z., Kamal, B., Ullah, S., Aziz, A., & Kanwal, A. (2023). High efficient and ultra-wideband polarization converter based on I-shaped metasurface for RCS reduction. Optics Communications, 530(3), 129101.
Year 2023, , 928 - 939, 31.12.2023
https://doi.org/10.18185/erzifbed.1217888

Abstract

References

  • [1] Nguyen, T. K. T., Nguyen, T. M., Nguyen, H. Q., Cao, T. N., Le, D. T., Bui, X. K., Bui, S. T., et al. (2021). Simple design of efficient broadband multifunctional polarization converter for X-band applications. Scientific reports, 11(1), 2032.
  • [2] Nguyen, T. Q. H., Nguyen, T. K. T., Nguyen, T. Q. M., Cao, T. N., Phan, H. L., Luong, N. M., Le, D. T., et al. (2021). Simple design of a wideband and wide-angle reflective linear polarization converter based on crescent-shaped metamaterial for Ku-band applications. Optics Communications, 486(1), 126773.
  • [3] Ahmed, F., Khan, M. I., & Tahir, F. A. (2021). A Multi-Functional Polarization Transforming Metasurface for C, X and K band Applications. IEEE Antennas and Wireless Propagation Letters, 1(c), 1.
  • [4] Khan, M. I., Khalid, Z., & Tahir, F. A. (2019). Linear and circular-polarization conversion in X-band using anisotropic metasurface. Scientific Reports, 9(1), 4552.
  • [5] Zheng, Y., Zhou, Y., Gao, J., Cao, X., Yang, H., Li, S., Xu, L., et al. (2017). Ultra-wideband polarization conversion metasurface and its application cases for antenna radiation enhancement and scattering suppression. Scientific Reports, 7(1), 16137.
  • [6] Sun, H., Gu, C., Chen, X., Li, Z., Liu, L., Xu, B., & Zhou, Z. (2017). Broadband and Broad-angle Polarization-independent Metasurface for Radar Cross Section Reduction. Scientific Reports, 7(1), 40782.
  • [7] Choudhury, S., Guler, U., Shaltout, A., Shalaev, V. M., Kildishev, A. V., & Boltasseva, A. (2017). Pancharatnam–Berry Phase Manipulating Metasurface for Visible Color Hologram Based on Low Loss Silver Thin Film. Advanced Optical Materials, 5(10), 1700196.
  • [8] Azizi, M. K., Baudrand, H., Latrach, L., & Gharsallah, A. (2017). Metamaterıal-Based Flat Lens: Wave Concept Iteratıve Process Approach. Progress In Electromagnetics Research C, 75, 13–21.
  • [9] Abdullah, S., Xiao, G., & Amaya, R. E. (2021). A Review on the History and Current Literature of Metamaterials and Its Applications to Antennas & Radio Frequency Identification (RFID) Devices. IEEE Journal of Radio Frequency Identification, 5(4), 427–445.
  • [10] Qiu, P., Qiu, W., Lin, Z., Chen, H., Ren, J., Wang, J.-X., Kan, Q., et al. (2017). Investigation of beam splitter in a zero-refractive-index photonic crystal at the frequency of Dirac-like point. Scientific Reports, 7(1), 9588.
  • [11] Park, J., & Min, B. (2021). Spatiotemporal plane wave expansion method for arbitrary space–time periodic photonic media. Optics Letters, 46(3), 484.
  • [12] Tang, J., Faraz, F., Chen, X., Zhang, Q., Li, Q., Li, Y., & Zhang, S. (2020). A Metasurface Superstrate for Mutual Coupling Reduction of Large Antenna Arrays. IEEE Access, 8, 126859–126867.
  • [13] Qian, J., Gou, P., Pan, H., Zhu, L., Gui, Y. S., Hu, C.-M., & An, Z. (2020). Hybrid perfect metamaterial absorber for microwave spin rectification applications. Scientific Reports, 10(1), 19240.
  • [14] Nguyen, T. M., Nguyen, T. K. T., Phan, D. T., Le, D. T., Vu, D. L., Nguyen, T. Q. H., & Kim, J.-M. (2022). Ultra-Wideband and Lightweight Electromagnetic Polarization Converter Based on Multiresonant Metasurface. IEEE Access, 10, 92097–92104.
  • [15] Gao, X., Han, X., Cao, W.-P., Li, H. O., Ma, H. F., & Cui, T. J. (2015). Ultrawideband and High-Efficiency Linear Polarization Converter Based on Double V-Shaped Metasurface. IEEE Transactions on Antennas and Propagation, 63(8), 3522–3530.
  • [16] Xu, G., Gao, L., Chen, Y., Ding, Y., Wang, J., Fang, Y., Wu, X., et al. (2022). Broadband Polarization Manipulation Based on W-Shaped Metasurface. Frontiers in Materials, 9(3), 1–6.
  • [17] Kamal, B., Chen, J., Yingzeng, Y., Ren, J., Ullah, S., & Khan, W. U. R. (2021). High efficiency and ultra-wideband polarization converter based on an L-shaped metasurface. Optical Materials Express, 11(5), 1343.
  • [18] Mei, Z. L., Ma, X. M., Lu, C., & Zhao, Y. D. (2017). High-efficiency and wide-bandwidth linear polarization converter based on double U-shaped metasurface. AIP Advances, 7(12), 125323.
  • [19] Salman, M. S., Khan, M. I., Tahir, F. A., & Rmili, H. (2020). Multifunctional Single Layer Metasurface Based on Hexagonal Split Ring Resonator. IEEE Access, 8, 28054–28063.
  • [20] Zhao, J., & Cheng, Y. (2016). A high-efficiency and broadband reflective 90° linear polarization rotator based on anisotropic metamaterial. Applied Physics B, 122(10), 255.
  • [21] Xu, J., Li, R., Wang, S., & Han, T. (2018). Ultra-broadband linear polarization converter based on anisotropic metasurface. Optics Express, 26(20), 26235.
  • [22] Lin, B., Huang, W., Guo, J., Wang, Y., Liu, Z., & Ye, H. (2023). A high efficiency ultra-wideband circular-to-linear polarization conversion metasurface. Optics Communications, 529(2), 129102.
  • [23] Faraz, Z., Kamal, B., Ullah, S., Aziz, A., & Kanwal, A. (2023). High efficient and ultra-wideband polarization converter based on I-shaped metasurface for RCS reduction. Optics Communications, 530(3), 129101.
There are 23 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Makaleler
Authors

Aykut Coşkun 0000-0002-7240-6865

Ahmet Teber 0000-0002-7361-2302

Mehmet Ertugrul 0000-0003-1921-7704

Early Pub Date December 25, 2023
Publication Date December 31, 2023
Published in Issue Year 2023

Cite

APA Coşkun, A., Teber, A., & Ertugrul, M. (2023). Wideband Polarization Conversion Based on Elliptical-Shaped Metasurface for X-Band Applications. Erzincan University Journal of Science and Technology, 16(3), 928-939. https://doi.org/10.18185/erzifbed.1217888