Research Article
BibTex RIS Cite
Year 2023, , 800 - 810, 31.12.2023
https://doi.org/10.18185/erzifbed.1293492

Abstract

References

  • [1] Rao, K., Raghavendra, A., Reddy, K., (2006) Physiology and molecular biology of stress tolerance (pp. 1-14). Springer: Dordrecht, Nertherlands.
  • [2] Partigöç, N. S., Soğancı, S., (2019) An inevitable consequence of global climate change: drought. Resilience Journal, 3(2): 287-299 (In Turkish). https://doi.org/10.32569/resilience.619219
  • [3] Çakmak, B., Gökalp, Z., (2013) Drought and agricultural water management. Gaziosmanpaşa Journal of Scientific Research, (4), 1-11 (In Turkish).
  • [4] Ashraf, M., Ozturk, M., (2008). Salinity and water stress: improving crop efficiency. Springer Science and Business Media, 44.
  • [5] Lisar, S. Y., Motafakkerazad, R., Hossain, M. M., Rahman, I. M., (2012) Water stress in plants: Causes, effects and responses. Water Stress, 25(1), 33. [6] Somerville, C., Briscoe, J., (2001) Genetic engineering and water. Science, 292(5525), 2217-2217. https://doi.org/10.1126/science.292.5525.2217
  • [7] Yildirim, E., Ekinci, M., Sahin, U., Ors, S., Turan, M., Demir, I., Dursun, A., Kotan, R., (2021) Improved water productivity in summer squash under water deficit with PGPR and synthetic methyl amine applications. Rhizosphere, 20, 100446. https://doi.org/10.1016/j.rhisph.2021.100446
  • [8] Shakeel, A. A., Xiao-yu, X., Long-chang, W., Muhammad, F. S., Chen, M., Wang, L., (2011) Morphological, physiological and biochemical responses of plants to drought stress. African Journal of Agricultural Research, 6, 2026-2032. https://doi.org/10.5897/AJAR10.027 [9] Bhargava, S., Sawant, K., (2013) Drought stress adaptation: metabolic ad justment and regulation of gene expression. Plant Breeding, 132, 21-32. https://doi.org/10.1111/pbr.12004 [10] Osakabe, Y., Osakabe, K., Shinozaki, K., Tran, L.S.P., (2014) Response of plants to water stress. Frontiers in Plant Science, 5, 1-7. https://doi.org/10.3389/fpls.2014.0008
  • [11] Farooq, M., Wahid, A., Kobayashi, N., Fujita, D., Basra, S.M.A., (2009) Plant Drought Stress: Effects, Mechanisms and Management. In: Lichtfouse, E., Navarrete, M., Debaeke, P., Véronique, S., Alberola, C. (eds) Sustainable Agriculture. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-2666-8_12
  • [12] Levitt, J., (1980) Response of Plants to Environmental Stresses. Academic Press, Orlando, 497s.
  • [13] Banik, P., Zeng, W., Tai, H., Bizimungu, B., Tanino, K., (2016) Effects of drought acclimation on drought stress resistance in potato (Solanum tuberosum L.) genotypes. Environmental and Experimental Botany, 126, 76-89. https://doi.org/10.1016/j.envexpbot.2016.01.008
  • [14] Selote, D. S., Khanna-Chopra, R., (2010) Antioxidant response of wheat roots to drought acclimation. Protoplasma, 245, 153-163. https://doi.org/10.1007/s00709-010-0169-x
  • [15] Khanna-Chopra, R., Selote, D. S., (2007) Acclimation to drought stress generates oxidative stress tolerance in drought resistant than susceptible wheat cultivar under field conditions. Environmental and Experimental Botany, 60(2), 276-283. https://doi.org/10.1016/j.envexpbot.2006.11.004
  • [16] Düzyaman, E., İlbi, H., İşçi, B., (2004) Bazı bamya çeşitlerinde düşük toprak sıcaklıklarının fide çıkışı üzerine etkileri. The Journal of Ege University Faculty of Agricultural, 41(1) (In Turkish).
  • [17] Eşiyok, D., (2012) Kışlık ve Yazlık Sebze Yetiştiriciliği. Ege Üniversitesi, Ziraat Fakültesi, Bahçe Bitkileri Bölümü, İzmir, 402s (In Turkish).
  • [18] Shams, M., Ekinci, M., Turan, M., Dursun, A., Kul, R., Yildirim, E., (2019) Growth, nutrient uptake and enzyme activity response of lettuce (Lactuca sativa L.) to excess copper. Environmental Sustainability, 2(1), 67-73. https://doi.org/10.1007/s42398-019-00051-7
  • [19] Lichtenthaler, H. K., Wellburn, A. R., (1983) Determinations of total carotenoids and chlorophylls a and b of leaf extracts in different solvents. 603rd Meetıng, Lıverpool, 591-592.
  • [20] Wellburn, A. R., (1994) The spectral determination of chlorophylls a and b, as well as total carotenoids, using various solvents with spectrophotometers of different resolution. Journal of Plant Physiology, 144(3), 307-313. https://doi.org/10.1016/S0176-1617(11)81192-2
  • [21] Velikova, V., Yordanov, I., Edreva, A., (2000) Oxidative stress and some antioxidant systems in acid rain-treated bean plants: protective role of exogenous polyamines. Plant Science, 151(1), 59-66. https://doi.org/10.1016/S0168-9452(99)00197-1
  • [22] Sahin, U., Ekinci, M., Ors, S., Turan, M., Yildiz, S., Yildirim, E., (2018) Effects of individual and combined effects of salinity and drought on physiological, nutritional and biochemical properties of cabbage (Brassica oleracea var. capitata). Scientia Horticulturae, 240, 196-204. https://doi.org/10.1016/j.scienta.2018.06.016
  • [23] Angelini, R., Manes, F., Federico, R., (1990) Spatial and functional correlation between daimine-oxsidase and peroxidase activities and their dependence upon de-etiolation and wounding in chick-pea stems. Planta, 182, 89-96. https://doi.org/10.1007/BF00239989
  • [24] Abedi, T., Pakniyat, H., (2010) Antioxidant enzymes changes in response to drought stress in ten cultivars of oilseed rape (Brassica napus L.). Czech Journal of Genetics and Plant Breeding, 46(1), 27-34. https://doi.org/10.17221/67/2009-CJGPB
  • [25] Gong, Y., Toivonen, P.M., Wiersma, P.A., Lu, C., Lau, O.L., (2000) Effect of freezing on the activity of catalase in apple flesh tissue. Journal of Agricultural and Food Chemistry, 48, 5537-5542. https://doi.org/10.1021/jf990525e
  • [26] Agarwal, S., Pandey, V., (2004) Antioxidant enzyme responses to NaCl stress in Cassia angustifolia. Biologia Plantarum, 48, 555-560. https://doi.org/10.1023/B:BIOP.0000047152.07878.e7
  • [27] Yordanova, R.Y., Christov, K.N., Popova, L.P., (2004) Antioxidative enzymes in barley plants subjected to soil flooding. Environmental and Experimental Botany, 51, 93-101. doi:10.1016/S0098-8472(03)00063-7
  • [28] SPSS (2010) SPSS Inc. 18.0 base user’s guide. Chicago (IL), Prentice Hall.
  • [29] Anjum, S. A., Xie, X., Wang, L. C., Saleem, M. F., Man, C., Lei, W., (2011) Morphological, physiological and biochemical responses of plants to drought stress. African Journal of Agricultural Research, 6(9), 2026-2032. https://doi.org/10.5897/AJAR10.027
  • [30] Murshed, R., Lopez-Lauri, F., Keller, C., Monnet, F., Sallanon, H., (2008) Acclimation to drought stress enhances oxidative stress tolerance in Solanum lycopersicum L. fruits. Plant Stress, 2(2), 145-151.
  • [31] Amin, B., Mahleghah, G., Mahmood, H. M. R., Hossein, M., (2009) Evaluation of interaction effect of drought stress with ascorbate and salicylic acid on some of physiological and biochemical parameters in okra (Hibiscus esculentus L.). Research Journal of Biological Sciences, 4(4), 380-387.
  • [32] Amin, B., Mahmood, H., (2011) Effect of drought stress and its interaction with ascorbate and salicylic acid on okra (Hibiscus esculents L.) germination and seedling growth. Journal of Stress Physiology and Biochemistry, 7(1), 55-65.
  • [33] Xu, Z., Zhou, G., Shimizu, H., (2010) Plant responses to drought and rewatering. Plant Signaling and Behavior, 5(6), 649-654. https://doi.org/10.4161/psb.5.6.11398
  • [34] Amoah, J. N., Ko, C. S., Yoon, J. S., Weon, S. Y., (2019) Effect of drought acclimation on oxidative stress and transcript expression in wheat (Triticum aestivum L.). Journal of Plant Interactions,14(1), 492-505. https://doi.org/10.1080/17429145.2019.1662098
  • [35] Smirnoff, N., (1993) Tansley Review No. 52. The role of active oxygen in the response of plants to water deficit and desiccation. The New Phytologist, 125(1), 27–58.
  • [36] Adejumo, S. A., Ezeh, O. S., Mur, L. A., (2019) Okra growth and drought tolerance when exposed to water regimes at different growth stages. International Journal of Vegetable Science, 25(3), 226-258. https://doi.org/10.1080/19315260.2018.1501788
  • [37] Kusvuran, S., (2012) Influence of drought stress on growth, ion accumulation and antioxidative enzymes in okra genotypes. International Journal of Agriculture and Biology, 14(3).
  • [38] Selote, D.S., Bharti, S., Khanna-Chopra, R., (2004) Drought acclimation reduces O2− accumulation and lipid peroxidation in wheat seedlings. Biochemical and Biophysical Research Communications, 314(3), 724-729. https://doi.org/10.1016/j.bbrc.2003.12.157

Effect of Drought Acclimation on Drought Stress Resistance in Okra Seedlings

Year 2023, , 800 - 810, 31.12.2023
https://doi.org/10.18185/erzifbed.1293492

Abstract

Öz
Bu çalışmada bamyada (Abelmoschus esculentus L.) fide döneminde kuraklık aklimasyonunun etkileri araştırılmıştır. Bu amaçla, aklimasyon yapılmamış ve stressiz (NA), aklimasyon yapılmış ve stressiz (DA), aklimasyon yapılmamış ve kuraklık stresli (NAS), aklimasyon yapılmış ve kuraklık stresli (DAS) olmak üzere dört farklı sulama uygulaması yapılmıştır. Uygulamaların bamya fidelerinin bitki boyu, gövde çapı, bitki taze ağırlığı, bitki kuru ağırlığı, kök taze ağırlığı, kök kuru ağırlığı, yaprak alanı, yaprak bağıl su içeriği (LRWC), klorofil değeri (SPAD), klorofil içeriği (a, b ve toplam klorofil), hidrojen peroksit (H2O2) içeriği, malondialdehit (MDA) içeriği ve antioksidan enzim aktivitesi (CAT, POD ve SOD) gibi parametreler üzerine etkisi incelenmiştir. Kuraklık stresi (NAS), bitki büyüme parametreleri üzerinde olumsuz bir etkiye sahipken, DAS'ın neden olduğu hasar daha düşük olmuştur. Ayrıca bitki boyu, gövde çapı, bitki taze ağırlığı, bitki kuru ağırlığı, kök taze ağırlığı, kök kuru ağırlığı, yaprak alanı, LRWC, SPAD ve klorofil içeriği DA ile en yüksek düzeyde olmuştur. Kuraklık stresi (NAS) ile H2O2, MDA ve antioksidan enzim aktivitesinde artış olmuş, DAS ile bu parametrelerdeki artış NAS uygulamasına göre daha düşük olmuştur. Çalışmada bamyada fide döneminde uygulanan kuraklık aklimasyonunun, normal koşullarda bitki büyümesine olumlu etkisinin yanı sıra kuraklık stresine karşı toleransı artırabileceği belirlenmiştir.

References

  • [1] Rao, K., Raghavendra, A., Reddy, K., (2006) Physiology and molecular biology of stress tolerance (pp. 1-14). Springer: Dordrecht, Nertherlands.
  • [2] Partigöç, N. S., Soğancı, S., (2019) An inevitable consequence of global climate change: drought. Resilience Journal, 3(2): 287-299 (In Turkish). https://doi.org/10.32569/resilience.619219
  • [3] Çakmak, B., Gökalp, Z., (2013) Drought and agricultural water management. Gaziosmanpaşa Journal of Scientific Research, (4), 1-11 (In Turkish).
  • [4] Ashraf, M., Ozturk, M., (2008). Salinity and water stress: improving crop efficiency. Springer Science and Business Media, 44.
  • [5] Lisar, S. Y., Motafakkerazad, R., Hossain, M. M., Rahman, I. M., (2012) Water stress in plants: Causes, effects and responses. Water Stress, 25(1), 33. [6] Somerville, C., Briscoe, J., (2001) Genetic engineering and water. Science, 292(5525), 2217-2217. https://doi.org/10.1126/science.292.5525.2217
  • [7] Yildirim, E., Ekinci, M., Sahin, U., Ors, S., Turan, M., Demir, I., Dursun, A., Kotan, R., (2021) Improved water productivity in summer squash under water deficit with PGPR and synthetic methyl amine applications. Rhizosphere, 20, 100446. https://doi.org/10.1016/j.rhisph.2021.100446
  • [8] Shakeel, A. A., Xiao-yu, X., Long-chang, W., Muhammad, F. S., Chen, M., Wang, L., (2011) Morphological, physiological and biochemical responses of plants to drought stress. African Journal of Agricultural Research, 6, 2026-2032. https://doi.org/10.5897/AJAR10.027 [9] Bhargava, S., Sawant, K., (2013) Drought stress adaptation: metabolic ad justment and regulation of gene expression. Plant Breeding, 132, 21-32. https://doi.org/10.1111/pbr.12004 [10] Osakabe, Y., Osakabe, K., Shinozaki, K., Tran, L.S.P., (2014) Response of plants to water stress. Frontiers in Plant Science, 5, 1-7. https://doi.org/10.3389/fpls.2014.0008
  • [11] Farooq, M., Wahid, A., Kobayashi, N., Fujita, D., Basra, S.M.A., (2009) Plant Drought Stress: Effects, Mechanisms and Management. In: Lichtfouse, E., Navarrete, M., Debaeke, P., Véronique, S., Alberola, C. (eds) Sustainable Agriculture. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-2666-8_12
  • [12] Levitt, J., (1980) Response of Plants to Environmental Stresses. Academic Press, Orlando, 497s.
  • [13] Banik, P., Zeng, W., Tai, H., Bizimungu, B., Tanino, K., (2016) Effects of drought acclimation on drought stress resistance in potato (Solanum tuberosum L.) genotypes. Environmental and Experimental Botany, 126, 76-89. https://doi.org/10.1016/j.envexpbot.2016.01.008
  • [14] Selote, D. S., Khanna-Chopra, R., (2010) Antioxidant response of wheat roots to drought acclimation. Protoplasma, 245, 153-163. https://doi.org/10.1007/s00709-010-0169-x
  • [15] Khanna-Chopra, R., Selote, D. S., (2007) Acclimation to drought stress generates oxidative stress tolerance in drought resistant than susceptible wheat cultivar under field conditions. Environmental and Experimental Botany, 60(2), 276-283. https://doi.org/10.1016/j.envexpbot.2006.11.004
  • [16] Düzyaman, E., İlbi, H., İşçi, B., (2004) Bazı bamya çeşitlerinde düşük toprak sıcaklıklarının fide çıkışı üzerine etkileri. The Journal of Ege University Faculty of Agricultural, 41(1) (In Turkish).
  • [17] Eşiyok, D., (2012) Kışlık ve Yazlık Sebze Yetiştiriciliği. Ege Üniversitesi, Ziraat Fakültesi, Bahçe Bitkileri Bölümü, İzmir, 402s (In Turkish).
  • [18] Shams, M., Ekinci, M., Turan, M., Dursun, A., Kul, R., Yildirim, E., (2019) Growth, nutrient uptake and enzyme activity response of lettuce (Lactuca sativa L.) to excess copper. Environmental Sustainability, 2(1), 67-73. https://doi.org/10.1007/s42398-019-00051-7
  • [19] Lichtenthaler, H. K., Wellburn, A. R., (1983) Determinations of total carotenoids and chlorophylls a and b of leaf extracts in different solvents. 603rd Meetıng, Lıverpool, 591-592.
  • [20] Wellburn, A. R., (1994) The spectral determination of chlorophylls a and b, as well as total carotenoids, using various solvents with spectrophotometers of different resolution. Journal of Plant Physiology, 144(3), 307-313. https://doi.org/10.1016/S0176-1617(11)81192-2
  • [21] Velikova, V., Yordanov, I., Edreva, A., (2000) Oxidative stress and some antioxidant systems in acid rain-treated bean plants: protective role of exogenous polyamines. Plant Science, 151(1), 59-66. https://doi.org/10.1016/S0168-9452(99)00197-1
  • [22] Sahin, U., Ekinci, M., Ors, S., Turan, M., Yildiz, S., Yildirim, E., (2018) Effects of individual and combined effects of salinity and drought on physiological, nutritional and biochemical properties of cabbage (Brassica oleracea var. capitata). Scientia Horticulturae, 240, 196-204. https://doi.org/10.1016/j.scienta.2018.06.016
  • [23] Angelini, R., Manes, F., Federico, R., (1990) Spatial and functional correlation between daimine-oxsidase and peroxidase activities and their dependence upon de-etiolation and wounding in chick-pea stems. Planta, 182, 89-96. https://doi.org/10.1007/BF00239989
  • [24] Abedi, T., Pakniyat, H., (2010) Antioxidant enzymes changes in response to drought stress in ten cultivars of oilseed rape (Brassica napus L.). Czech Journal of Genetics and Plant Breeding, 46(1), 27-34. https://doi.org/10.17221/67/2009-CJGPB
  • [25] Gong, Y., Toivonen, P.M., Wiersma, P.A., Lu, C., Lau, O.L., (2000) Effect of freezing on the activity of catalase in apple flesh tissue. Journal of Agricultural and Food Chemistry, 48, 5537-5542. https://doi.org/10.1021/jf990525e
  • [26] Agarwal, S., Pandey, V., (2004) Antioxidant enzyme responses to NaCl stress in Cassia angustifolia. Biologia Plantarum, 48, 555-560. https://doi.org/10.1023/B:BIOP.0000047152.07878.e7
  • [27] Yordanova, R.Y., Christov, K.N., Popova, L.P., (2004) Antioxidative enzymes in barley plants subjected to soil flooding. Environmental and Experimental Botany, 51, 93-101. doi:10.1016/S0098-8472(03)00063-7
  • [28] SPSS (2010) SPSS Inc. 18.0 base user’s guide. Chicago (IL), Prentice Hall.
  • [29] Anjum, S. A., Xie, X., Wang, L. C., Saleem, M. F., Man, C., Lei, W., (2011) Morphological, physiological and biochemical responses of plants to drought stress. African Journal of Agricultural Research, 6(9), 2026-2032. https://doi.org/10.5897/AJAR10.027
  • [30] Murshed, R., Lopez-Lauri, F., Keller, C., Monnet, F., Sallanon, H., (2008) Acclimation to drought stress enhances oxidative stress tolerance in Solanum lycopersicum L. fruits. Plant Stress, 2(2), 145-151.
  • [31] Amin, B., Mahleghah, G., Mahmood, H. M. R., Hossein, M., (2009) Evaluation of interaction effect of drought stress with ascorbate and salicylic acid on some of physiological and biochemical parameters in okra (Hibiscus esculentus L.). Research Journal of Biological Sciences, 4(4), 380-387.
  • [32] Amin, B., Mahmood, H., (2011) Effect of drought stress and its interaction with ascorbate and salicylic acid on okra (Hibiscus esculents L.) germination and seedling growth. Journal of Stress Physiology and Biochemistry, 7(1), 55-65.
  • [33] Xu, Z., Zhou, G., Shimizu, H., (2010) Plant responses to drought and rewatering. Plant Signaling and Behavior, 5(6), 649-654. https://doi.org/10.4161/psb.5.6.11398
  • [34] Amoah, J. N., Ko, C. S., Yoon, J. S., Weon, S. Y., (2019) Effect of drought acclimation on oxidative stress and transcript expression in wheat (Triticum aestivum L.). Journal of Plant Interactions,14(1), 492-505. https://doi.org/10.1080/17429145.2019.1662098
  • [35] Smirnoff, N., (1993) Tansley Review No. 52. The role of active oxygen in the response of plants to water deficit and desiccation. The New Phytologist, 125(1), 27–58.
  • [36] Adejumo, S. A., Ezeh, O. S., Mur, L. A., (2019) Okra growth and drought tolerance when exposed to water regimes at different growth stages. International Journal of Vegetable Science, 25(3), 226-258. https://doi.org/10.1080/19315260.2018.1501788
  • [37] Kusvuran, S., (2012) Influence of drought stress on growth, ion accumulation and antioxidative enzymes in okra genotypes. International Journal of Agriculture and Biology, 14(3).
  • [38] Selote, D.S., Bharti, S., Khanna-Chopra, R., (2004) Drought acclimation reduces O2− accumulation and lipid peroxidation in wheat seedlings. Biochemical and Biophysical Research Communications, 314(3), 724-729. https://doi.org/10.1016/j.bbrc.2003.12.157
There are 35 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Makaleler
Authors

Ümit Torun 0009-0006-0797-6681

Ertan Yıldırım 0000-0003-3369-0645

Melek Ekinci 0000-0002-7604-3803

Early Pub Date December 25, 2023
Publication Date December 31, 2023
Published in Issue Year 2023

Cite

APA Torun, Ü., Yıldırım, E., & Ekinci, M. (2023). Effect of Drought Acclimation on Drought Stress Resistance in Okra Seedlings. Erzincan University Journal of Science and Technology, 16(3), 800-810. https://doi.org/10.18185/erzifbed.1293492