Research Article
BibTex RIS Cite
Year 2023, , 654 - 671, 31.12.2023
https://doi.org/10.18185/erzifbed.1352146

Abstract

References

  • [1] Aminu, A., Oladepo, S. A., (2021) Fast Orange Peel-Mediated Synthesis of Silver Nanoparticles and Use as Visual Colorimetric Sensor in the Selective Detection of Mercury(II) Ions. Arabian Journal for Science and Engineering, 46 (6) 5477–5487.
  • [2] Muhammad, S. P., Shah, M. R., Ullah, R., Ahmad, I., Ali, K., (2022) Synthesis and Characterization of Functionalized Silver Nanoparticles for Selective Screening of Mercury (II) Ions. Arabian Journal for Science and Engineering, 47 (6) 7135–7145.
  • [3] Jayeoye, T. J., Eze, F. N., Olatunji, O. J., Tyopine, A. A., (2022) Synthesis of biocompatible Konjac glucomannan stabilized silver nanoparticles, with Asystasia gangetica phenolic extract for colorimetric detection of mercury (II) ion. Scientific Reports, 12 (1) 1–15.
  • [4] Kumar, P., Sonkar, P. K., Tiwari, K. N., Singh, A. K., Mishra, S. K., Dixit, J., Ganesan, V., Singh, J., (2022) Sensing of mercury ion using light induced aqueous leaf extract mediated green synthesized silver nanoparticles of Cestrum nocturnum L. Environmental Science and Pollution Research, 29 (53) 79995–80004.
  • [5] Khwannimit, D., Jaikrajang, N., Dokmaisrijan, S., Rattanakit, P., (2019) Biologically green synthesis of silver nanoparticles from Citrullus lanatus extract with L-cysteine addition and investigation of colorimetric sensing of nickel(II) potential. Materials Today: Proceedings, 17 2028–2038.
  • [6] Avissa, M., Alauhdin, M., (2022) Selective Colorimetric Detection of Mercury(II) Using Silver Nanoparticles-Chitosan. Molekul, 17 (1) 107–115.
  • [7] Kumar, K. S., Ramakrishnappa, T., (2021) Green synthesized uncapped Ag colloidal nanoparticles for selective colorimetric sensing of divalent Hg and H2O2. Journal of Environmental Chemical Engineering, 9 (4) 105365.
  • [8] Taşkıran, F., Uzunoğlu, D., Özer, A., (2017) Biosynthesis, Characterisation and Determination of Adsorbent Properties of Silver Nanoparticles With Cyprus Acacia (Acacia Cyanophylla) Leaf Extract. Anadolu University Journal Of Science And Technology A - Applied Sciences and Engineering, 1–1.
  • [9] Chen, J., Ding, J., Li, D., Wang, Y., Wu, Y., Yang, X., Chinnathambi, A., Salmen, S. H., Ali Alharbi, S., (2022) Facile preparation of Au nanoparticles mediated by Foeniculum Vulgare aqueous extract and investigation of the anti-human breast carcinoma effects. Arabian Journal of Chemistry, 15 (1) 103479.
  • [10] Shrivas, K., Sahu, B., Deb, M. K., Thakur, S. S., Sahu, S., Kurrey, R., Kant, T., Patle, T. K., Jangde, R., (2019) Colorimetric and paper-based detection of lead using PVA capped silver nanoparticles: Experimental and theoretical approach. Microchemical Journal, 150 (August) 104156.
  • [11] Vyas, G., Bhatt, S., Paul, P., (2019) Synthesis of calixarene-capped silver nanoparticles for colorimetric and amperometric detection of mercury (Hg II , Hg 0 ). ACS Omega, 4 (2) 3860–3870.
  • [12] Sharma, P., Mourya, M., Choudhary, D., Goswami, M., Kundu, I., Dobhal, M. P., Tripathi, C. S. P., Guin, D., (2018) Thiol terminated chitosan capped silver nanoparticles for sensitive and selective detection of mercury (II) ions in water. Sensors and Actuators, B: Chemical, 268 310–318.
  • [13] Cheon, J. Y., Park, W. H., (2016) Green synthesis of silver nanoparticles stabilized with mussel-inspired protein and colorimetric sensing of lead(II) and copper(II) ions. International Journal of Molecular Sciences, 17 (12)
  • [14] Chugh, D., Viswamalya, V. S., Das, B., (2021) Green synthesis of silver nanoparticles with algae and the importance of capping agents in the process. Journal of Genetic Engineering and Biotechnology, 19 (1)
  • [15] Poosinuntakul, N., Parnklang, T., Sitiwed, T., Chaiyo, S., Kladsomboon, S., Chailapakul, O., Apilux, A., (2020) Colorimetric assay for determination of Cu (II) ions using L-cysteine functionalized silver nanoplates. Microchemical Journal, 158 (April) 105101.
  • [16] Maiti, S., Barman, G., Konar Laha, J., (2016) Detection of heavy metals (Cu+2, Hg+2) by biosynthesized silver nanoparticles. Applied Nanoscience (Switzerland), 6 (4) 529–538.
  • [17] Perni, S., Hakala, V., Prokopovich, P., (2013) Biogenic synthesis of antimicrobial silver nanoparticles capped with L-cysteine. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 460 219–224.
  • [18] Novoa, C. C., Tortella, G., Seabra, A. B., Diez, M. C., Rubilar, O., (2022) Cotton Textile with Antimicrobial Activity and Enhanced Durability Produced by L-Cysteine-Capped Silver Nanoparticles. Processes, 10 (5)
  • [19] Zhang, W., Zhang, L., Sun, Y., (2015) Size-controlled green synthesis of silver nanoparticles assisted by L-cysteine. Frontiers of Chemical Science and Engineering, 9 (4) 494–500.
  • [20] Qingquan, G., Xinfu, M., Yu, X., Wei, T., Hui, Z., (2017) Green synthesis and formation mechanism of Ag nanoflowers using L-cysteine and the assessment of Ag nanoflowers as SERS substrates. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 530 (June) 33–37.
  • [21] Memon, R., Memon, A. A., Sirajuddin., Balouch, A., Memon, K., Sherazi, S. T. H., Chandio, A. A., Kumar, R., (2022) Ultrasensitive colorimetric detection of Hg2+ in aqueous media via green synthesis by Ziziphus mauritiana Leaf extract-based silver nanoparticles. International Journal of Environmental Analytical Chemistry, 102 (18) 7046–7061.
  • [22] Cao, X., Zhu, L., Yu, G., Zhang, X., Jin, H., He, D., (2023) Visual and colorimetric determination of mercury (II) based on lignosulfonate-capped silver nanoparticles. Green Chemistry Letters and Reviews, 16 (1)
  • [23] Fan, P., He, S., Cheng, J., Hu, C., Liu, C., Yang, S., Liu, J., (2021) l-Cysteine modified silver nanoparticles-based colorimetric sensing for the sensitive determination of Hg2+ in aqueous solutions. Luminescence, 36 (3) 698–704. [24] Samuel, V. R., Rao, K. J., (2023) A rapid colorimetric dual sensor for the detecti on of mercury and lead ions in water using cysteine capped silver nanoparticles. Chemical Physics Impact, 6 (December 2022) 100161.
  • [25] Irfan, M. I., Amjad, F., Abbas, A., Ur Rehman, M. F., Kanwal, F., Saeed, M., Ullah, S., Lu, C., (2022) Novel Carboxylic Acid-Capped Silver Nanoparticles as Antimicrobial and Colorimetric Sensing Agents. Molecules, 27 (11) 1–13.
  • [26] Ali, I., Imkan., Ullah, S., Ahmed, F., Yasmeen, S., Imran, M., Althagafi, I. I., Shah, M. R., (2021) Synthesis and characterization of triazole stabilized silver nanoparticles as colorimetric probe for mercury. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 629 (March) 127419.
  • [27] Plaeyao, K., Kampangta, R., Korkokklang, Y. et al., (2023) Gingerol extract-stabilized silver nanoparticles and their applications: colorimetric and machine learning-based sensing of Hg(ii) and antibacterial properties. RSC Advances, 13 (29) 19789–19802.
  • [28] Saenchoopa, A., Boonta, W., Talodthaisong, C., Srichaiyapol, O., Patramanon, R., Kulchat, S., (2021) Colorimetric detection of Hg(II) by γ-aminobutyric acid-silver nanoparticles in water and the assessment of antibacterial activities. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 251 119433.
  • [29] Demirezen Yılmaz, D., Aksu Demirezen, D., Mıhçıokur, H., (2021) Colorimetric detection of mercury ion using chlorophyll functionalized green silver nanoparticles in aqueous medium. Surfaces and Interfaces, 22 (September 2020) 100840.
  • [30] Kalam, A., Al-Sehemi, A. G., Ashrafuzzaman, M., Sharif, A. M., Yadav, P., Du, G., (2023) Optical and Colorimetric Sensing of Toxic Mercury Ion Using Green Synthesized Silver Nanoparticles. Bulletin of the Chemical Society of Ethiopia, 37 (5) 1287–1298.
  • [31] Das, A., Bhadra, K., Kumar, G. S., (2011) Targeting RNA by small molecules: Comparative structural and thermodynamic aspects of aristololactam-β-D-glucoside and daunomycin binding to tRNA phe. PLoS ONE, 6 (8)

Green Synthesis and Characterization of Silver Nanoparticles (AgNPs) and L-cysteine-capped AgNPs with Foeniculum vulgare seed extract for Colorimetric Hg2+ Detection

Year 2023, , 654 - 671, 31.12.2023
https://doi.org/10.18185/erzifbed.1352146

Abstract

In this study, silver nanoparticles (AgNPs) and L-cysteine-capped AgNPs were synthesized separately using Foeniculum vulgare seed extract as the reducing agent and L-cysteine as the capping agent, which were characterized by ultraviolet–visible spectrophotometer (UV–vis), Fourier Transform Infrared spectrophotometer (FT-IR), X-ray diffractometer (XRD), and transmission electron microscopy (TEM). The utilization of the synthesized nanomaterials as colorimetric sensors for the detection of Hg2+ ions was also investigated. In this context, it was determined that L-cysteine-capped AgNPs exhibited better performance in the colorimetric Hg2+ detection in regards to sensitivity, selectivity, and applicability in real samples. It was observed that the colorimetric detection method was based on the disappearance of the brown color of the nanomaterial-contained colloidal solution and thus the decrease in the LSPR peak intensity. The method of the colorimetric Hg2+ detection with L-cysteine-capped AgNPs showed the good regression coefficient with the minimum detection limit of 0.36 μM in the linear Hg2+ concentration range of 1.0-10 μM, which indicated the competitive results compared to the latest reported colorimetric sensors in the literature. According to the obtained results, it has been concluded that the studied method enables to detection of Hg2+ ions colorimetrically via L-cysteine-capped AgNPs in a sensitive, selective, applicable in real samples, cheap, and easy way.

References

  • [1] Aminu, A., Oladepo, S. A., (2021) Fast Orange Peel-Mediated Synthesis of Silver Nanoparticles and Use as Visual Colorimetric Sensor in the Selective Detection of Mercury(II) Ions. Arabian Journal for Science and Engineering, 46 (6) 5477–5487.
  • [2] Muhammad, S. P., Shah, M. R., Ullah, R., Ahmad, I., Ali, K., (2022) Synthesis and Characterization of Functionalized Silver Nanoparticles for Selective Screening of Mercury (II) Ions. Arabian Journal for Science and Engineering, 47 (6) 7135–7145.
  • [3] Jayeoye, T. J., Eze, F. N., Olatunji, O. J., Tyopine, A. A., (2022) Synthesis of biocompatible Konjac glucomannan stabilized silver nanoparticles, with Asystasia gangetica phenolic extract for colorimetric detection of mercury (II) ion. Scientific Reports, 12 (1) 1–15.
  • [4] Kumar, P., Sonkar, P. K., Tiwari, K. N., Singh, A. K., Mishra, S. K., Dixit, J., Ganesan, V., Singh, J., (2022) Sensing of mercury ion using light induced aqueous leaf extract mediated green synthesized silver nanoparticles of Cestrum nocturnum L. Environmental Science and Pollution Research, 29 (53) 79995–80004.
  • [5] Khwannimit, D., Jaikrajang, N., Dokmaisrijan, S., Rattanakit, P., (2019) Biologically green synthesis of silver nanoparticles from Citrullus lanatus extract with L-cysteine addition and investigation of colorimetric sensing of nickel(II) potential. Materials Today: Proceedings, 17 2028–2038.
  • [6] Avissa, M., Alauhdin, M., (2022) Selective Colorimetric Detection of Mercury(II) Using Silver Nanoparticles-Chitosan. Molekul, 17 (1) 107–115.
  • [7] Kumar, K. S., Ramakrishnappa, T., (2021) Green synthesized uncapped Ag colloidal nanoparticles for selective colorimetric sensing of divalent Hg and H2O2. Journal of Environmental Chemical Engineering, 9 (4) 105365.
  • [8] Taşkıran, F., Uzunoğlu, D., Özer, A., (2017) Biosynthesis, Characterisation and Determination of Adsorbent Properties of Silver Nanoparticles With Cyprus Acacia (Acacia Cyanophylla) Leaf Extract. Anadolu University Journal Of Science And Technology A - Applied Sciences and Engineering, 1–1.
  • [9] Chen, J., Ding, J., Li, D., Wang, Y., Wu, Y., Yang, X., Chinnathambi, A., Salmen, S. H., Ali Alharbi, S., (2022) Facile preparation of Au nanoparticles mediated by Foeniculum Vulgare aqueous extract and investigation of the anti-human breast carcinoma effects. Arabian Journal of Chemistry, 15 (1) 103479.
  • [10] Shrivas, K., Sahu, B., Deb, M. K., Thakur, S. S., Sahu, S., Kurrey, R., Kant, T., Patle, T. K., Jangde, R., (2019) Colorimetric and paper-based detection of lead using PVA capped silver nanoparticles: Experimental and theoretical approach. Microchemical Journal, 150 (August) 104156.
  • [11] Vyas, G., Bhatt, S., Paul, P., (2019) Synthesis of calixarene-capped silver nanoparticles for colorimetric and amperometric detection of mercury (Hg II , Hg 0 ). ACS Omega, 4 (2) 3860–3870.
  • [12] Sharma, P., Mourya, M., Choudhary, D., Goswami, M., Kundu, I., Dobhal, M. P., Tripathi, C. S. P., Guin, D., (2018) Thiol terminated chitosan capped silver nanoparticles for sensitive and selective detection of mercury (II) ions in water. Sensors and Actuators, B: Chemical, 268 310–318.
  • [13] Cheon, J. Y., Park, W. H., (2016) Green synthesis of silver nanoparticles stabilized with mussel-inspired protein and colorimetric sensing of lead(II) and copper(II) ions. International Journal of Molecular Sciences, 17 (12)
  • [14] Chugh, D., Viswamalya, V. S., Das, B., (2021) Green synthesis of silver nanoparticles with algae and the importance of capping agents in the process. Journal of Genetic Engineering and Biotechnology, 19 (1)
  • [15] Poosinuntakul, N., Parnklang, T., Sitiwed, T., Chaiyo, S., Kladsomboon, S., Chailapakul, O., Apilux, A., (2020) Colorimetric assay for determination of Cu (II) ions using L-cysteine functionalized silver nanoplates. Microchemical Journal, 158 (April) 105101.
  • [16] Maiti, S., Barman, G., Konar Laha, J., (2016) Detection of heavy metals (Cu+2, Hg+2) by biosynthesized silver nanoparticles. Applied Nanoscience (Switzerland), 6 (4) 529–538.
  • [17] Perni, S., Hakala, V., Prokopovich, P., (2013) Biogenic synthesis of antimicrobial silver nanoparticles capped with L-cysteine. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 460 219–224.
  • [18] Novoa, C. C., Tortella, G., Seabra, A. B., Diez, M. C., Rubilar, O., (2022) Cotton Textile with Antimicrobial Activity and Enhanced Durability Produced by L-Cysteine-Capped Silver Nanoparticles. Processes, 10 (5)
  • [19] Zhang, W., Zhang, L., Sun, Y., (2015) Size-controlled green synthesis of silver nanoparticles assisted by L-cysteine. Frontiers of Chemical Science and Engineering, 9 (4) 494–500.
  • [20] Qingquan, G., Xinfu, M., Yu, X., Wei, T., Hui, Z., (2017) Green synthesis and formation mechanism of Ag nanoflowers using L-cysteine and the assessment of Ag nanoflowers as SERS substrates. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 530 (June) 33–37.
  • [21] Memon, R., Memon, A. A., Sirajuddin., Balouch, A., Memon, K., Sherazi, S. T. H., Chandio, A. A., Kumar, R., (2022) Ultrasensitive colorimetric detection of Hg2+ in aqueous media via green synthesis by Ziziphus mauritiana Leaf extract-based silver nanoparticles. International Journal of Environmental Analytical Chemistry, 102 (18) 7046–7061.
  • [22] Cao, X., Zhu, L., Yu, G., Zhang, X., Jin, H., He, D., (2023) Visual and colorimetric determination of mercury (II) based on lignosulfonate-capped silver nanoparticles. Green Chemistry Letters and Reviews, 16 (1)
  • [23] Fan, P., He, S., Cheng, J., Hu, C., Liu, C., Yang, S., Liu, J., (2021) l-Cysteine modified silver nanoparticles-based colorimetric sensing for the sensitive determination of Hg2+ in aqueous solutions. Luminescence, 36 (3) 698–704. [24] Samuel, V. R., Rao, K. J., (2023) A rapid colorimetric dual sensor for the detecti on of mercury and lead ions in water using cysteine capped silver nanoparticles. Chemical Physics Impact, 6 (December 2022) 100161.
  • [25] Irfan, M. I., Amjad, F., Abbas, A., Ur Rehman, M. F., Kanwal, F., Saeed, M., Ullah, S., Lu, C., (2022) Novel Carboxylic Acid-Capped Silver Nanoparticles as Antimicrobial and Colorimetric Sensing Agents. Molecules, 27 (11) 1–13.
  • [26] Ali, I., Imkan., Ullah, S., Ahmed, F., Yasmeen, S., Imran, M., Althagafi, I. I., Shah, M. R., (2021) Synthesis and characterization of triazole stabilized silver nanoparticles as colorimetric probe for mercury. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 629 (March) 127419.
  • [27] Plaeyao, K., Kampangta, R., Korkokklang, Y. et al., (2023) Gingerol extract-stabilized silver nanoparticles and their applications: colorimetric and machine learning-based sensing of Hg(ii) and antibacterial properties. RSC Advances, 13 (29) 19789–19802.
  • [28] Saenchoopa, A., Boonta, W., Talodthaisong, C., Srichaiyapol, O., Patramanon, R., Kulchat, S., (2021) Colorimetric detection of Hg(II) by γ-aminobutyric acid-silver nanoparticles in water and the assessment of antibacterial activities. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 251 119433.
  • [29] Demirezen Yılmaz, D., Aksu Demirezen, D., Mıhçıokur, H., (2021) Colorimetric detection of mercury ion using chlorophyll functionalized green silver nanoparticles in aqueous medium. Surfaces and Interfaces, 22 (September 2020) 100840.
  • [30] Kalam, A., Al-Sehemi, A. G., Ashrafuzzaman, M., Sharif, A. M., Yadav, P., Du, G., (2023) Optical and Colorimetric Sensing of Toxic Mercury Ion Using Green Synthesized Silver Nanoparticles. Bulletin of the Chemical Society of Ethiopia, 37 (5) 1287–1298.
  • [31] Das, A., Bhadra, K., Kumar, G. S., (2011) Targeting RNA by small molecules: Comparative structural and thermodynamic aspects of aristololactam-β-D-glucoside and daunomycin binding to tRNA phe. PLoS ONE, 6 (8)
There are 30 citations in total.

Details

Primary Language English
Subjects Sensor Technology
Journal Section Makaleler
Authors

Deniz Uzunoğlu Doğruyol 0000-0001-9706-303X

Early Pub Date December 25, 2023
Publication Date December 31, 2023
Published in Issue Year 2023

Cite

APA Uzunoğlu Doğruyol, D. (2023). Green Synthesis and Characterization of Silver Nanoparticles (AgNPs) and L-cysteine-capped AgNPs with Foeniculum vulgare seed extract for Colorimetric Hg2+ Detection. Erzincan University Journal of Science and Technology, 16(3), 654-671. https://doi.org/10.18185/erzifbed.1352146