Research Article
BibTex RIS Cite

Toksoplazma gondii Tespiti İçin Altın Nanoparçacık/Kitosan ile Dekore Edilmiş Serigrafi Baskı Elektrota Dayalı Yeni Bir Elektrokimyasal İmmünosensör Tasarımı

Year 2023, , 840 - 853, 31.12.2023
https://doi.org/10.18185/erzifbed.1370317

Abstract

Toksoplazma gondii hücre içi bir parazittir ve ana konak olarak kedileri kullanmaktadır. Kedi dışkısı ile yayılan bu parazit diğer canlılara ve oradan insanlara birçok farklı yolla bulaşabilir. Sağlıklı insanlarda hastalığa sebebiyet veren bu parazit özellikle kemoterapi gören veya organ nakli olan bağışıklık sistemi zayıf hastalarda ve anne karnındaki fetüslerde ölüme yol açabilmektedir. Bu parazit enfeksiyonunun tüm dünyada oldukça sık görülmesi sebebiyle kontrol altında tutulması gerekmektedir. Bu çalışmada bu amaçla toksoplazmayı direkt tespit edebilecek antikor temelli elektrokimyasal bir biyosensör geliştirildi. Geliştirilen sensörde serigrafi baskılı elektrotlar kullanıldı. Elektrot yüzeyi kitosan ve altın nanoparçacıklarla modifiye edildi. Modifiye edilen elektrot yüzeyine anti-toksoplazma gondii antikorları glutaraldehit ile immobilize edildi. Yüzey özelliklerindeki değişimler diferansiyel puls voltametrisi, döngüsel voltametri, elektrokimyasal impedans spektroskopisi gibi tekniklerle incelendi. Geliştirilen immünosensörün yüzey morfolojisi taramalı elektron mikroskopu ile görüntülendi. Lineer çalışma alanı ve tayin limiti belirlenen biyosensör daha sonra sentetik serum içerisinde toksoplazma gondii tayininde kullanıldı.

Project Number

A-2337

References

  • [1] Dubey, J. P. and Jones, J. L. (2008). Toxoplasma gondii infection in humans and animals in the United States. Int J Parasitol 38 1257–78.
  • [2] Hill, D. E., Chirukandoth, S. and Dubey, J. P. (2005). Biology and epidemiology of Toxoplasma gondii in man and animals . Anim Health Res Rev 6 41–61.
  • [3] Chen, J., Xue, L., Hu, H., Yin, X., Cao, H. and Shen, B. (2022). MIC17A is a novel diagnostic marker for feline toxoplasmosis. Animal Diseases 2.
  • [4] Black, M. W. and Boothroyd, J. C. (2000). Lytic Cycle of Toxoplasma gondii . Microbiology and Molecular Biology Reviews 64 607–23.
  • [5] Pinto-Ferreira, F., Caldart, E. T., Pasquali, A. K. S., Mitsuka-Breganó, R., Freire, R. L. and Navarro, I. T. (2019). Patterns of transmission and sources of infection in outbreaks of human toxoplasmosis. Emerg Infect Dis 25 2177–82.
  • [6] Tong, W. H., Hlaváčová, J., Abdulai-Saiku, S., Kaňková, Š., Flegr, J. and Vyas, A. (2023). Presence of Toxoplasma gondii tissue cysts in human semen: Toxoplasmosis as a potential sexually transmissible infection. Journal of Infection 86 60–5.
  • [7] Kaňková, Hlaváčová, J. and Flegr, J. (2020). Oral sex: A new, and possibly the most dangerous, route of toxoplasmosis transmission. Med Hypotheses 141 109725.
  • [8] Paquet, C., Yudin, M. H., Allen, V. M., Bouchard, C., Boucher, M., Caddy, S., Castillo, E., Money, D. M., Murphy, K. E., Ogilvie, G., van Schalkwyk, J. and Senikas, V. (2013). Toxoplasmosis in Pregnancy: Prevention, Screening, and Treatment. Journal of Obstetrics and Gynaecology Canada 35 78–9.
  • [9] Gómez-Chávez, F., Murrieta-Coxca, J. M., Caballero-Ortega, H., Morales-Prieto, D. M. and Markert, U. R. (2023). Host-pathogen interactions mediated by extracellular vesicles in Toxoplasma gondii infection during pregnancy. J Reprod Immunol 158 103957.
  • [10] Jiang, S., Hua, E., Liang, M., Liu, B. and Xie, G. (2013). A novel immunosensor for detecting toxoplasma gondii-specific IgM based on goldmag nanoparticles and graphene sheets. Colloids Surf B Biointerfaces 101 481–6.
  • [11] Wesołowski, R., Pawłowska, M., Smoguła, M. and Szewczyk-Golec, K. (2023). Advances and Challenges in Diagnostics of Toxoplasmosis in HIV-Infected Patients. Pathogens 2023, Vol. 12, Page 110 12 110.
  • [12] Roche, A. D., Rowley, D., Brett, F. M. and Looby, S. (2018). Concentric and Eccentric Target MRI Signs in a Case of HIV-Associated Cerebral Toxoplasmosis. Case Rep Neurol Med 2018 1–3.
  • [13] Ozcelik, S., Alim, M. and Ozpinar, N. (2020). Detection of Toxoplasma gondii infection among diabetic patients in Turkey. Clin Epidemiol Glob Health 8 899–902.
  • [14] Sevimligul, G., Polat, Z. A. and Gokce, S. F. (2023). Toxoplasma gondii and multiple sclerosis: a population-based case-control seroprevalence study, Central Anatolia, Turkey. Mult Scler Relat Disord 78 104871.
  • [15] Molaei, S., Masoomeh Dadkhah and Fathi, F. (2023). Toxoplasmosis diagnostic techniques: Current developed methods and biosensors. Talanta 252 123828.
  • [16] Bulut, U., Sanli, S., Cevher, S. C., Cirpan, A., Donmez, S. and Timur, S. (2020). A biosensor platform based on amine functionalized conjugated benzenediamine-benzodithiophene polymer for testosterone analysis. J Appl Polym Sci 137.
  • [17] Sanli, S., Moulahoum, H., Ghorbanizamani, F., Celik, E. G. and Timur, S. (2020). Ultrasensitive covalently-linked Aptasensor for cocaine detection based on electrolytes-induced repulsion/attraction of colloids. Biomed Microdevices 22.
  • [18] Sharafeldin, M., McCaffrey, K. and Rusling, J. F. (2019). Influence of antibody immobilization strategy on carbon electrode immunoarrays. Analyst 144 5108–16.
  • [19] Sanli, S., Moulahoum, H., Ghorbanizamani, F., Gumus, Z. P. and Timur, S. (2020). On-Site Testosterone Biosensing for Doping Detection: Electrochemical Immunosensing via Functionalized Magnetic Nanoparticles and Screen-Printed Electrodes. ChemistrySelect 5 14911–6.
  • [20] Yılmaz Kabaca, A., Bilgi Kamaç, M., Yılmaz, M. and Atıcı, T. (2023). Ultra-sensitive electrochemical sensors for simultaneous determination of dopamine and serotonin based on titanium oxide-gold nanoparticles-poly Nile blue (in deep eutectic solvent). Electrochim Acta 467 143046.
  • [21] Wu, S., Li, K., Dai, X., Zhang, Z., Ding, F. and Li, S. (2020). An ultrasensitive electrochemical platform based on imprinted chitosan/gold nanoparticles/graphene nanocomposite for sensing cadmium (II) ions. Microchemical Journal 155 104710.
  • [22] Bonardd, S., Ramirez, O., Abarca, G., Leiva, Á., Saldías, C. and Díaz, D. D. (2022). Porous chitosan-based nanocomposites containing gold nanoparticles. Increasing the catalytic performance through film porosity. Int J Biol Macromol 217 864–77.
  • [23] Sanli, S., Celik, E. G., Demir, B., Gumus, Z. P., Ilktac, R., Aksuner, N., Demirkol, D. O. and Timur, S. (2018). Magnetic Nanofiber Layers as a Functional Surface for Biomolecule Immobilization and One-Use ‘Sensing in-a-Drop’ Applications. ChemistrySelect 3 13553–60.
  • [24] Durmus, C., Balaban Hanoglu, S., Harmanci, D., Moulahoum, H., Tok, K., Ghorbanizamani, F., Sanli, S., Zihnioglu, F., Evran, S., Cicek, C., Sertoz, R., Arda, B., Goksel, T., Turhan, K. and Timur, S. (2022). Indiscriminate SARS-CoV-2 multivariant detection using magnetic nanoparticle- based electrochemical immunosensing. Talanta 243.
  • [25] Oh, J.-W., Chun, C. and Chandrasekaran, M. Preparation and In Vitro Characterization of Chitosan Nanoparticles and Their Broad-Spectrum Antifungal Action Compared to Antibacterial Activities against Phytopathogens of Tomato.
  • [26] Rani, D., Nayak, B. and Srivastava, S. (2023). Smaller Sized Hepatitis E Virus ORF2 Protein-Chitosan Nanoemulsion Conjugate Elicits Improved Immune Response. Biointerface Res Appl Chem 13.
  • [27] Zhang, S., Lin, S., Zhu, L., Du, Z., Li, J., Wang, L. and Xu, W. (2022). Novel indicator and stem-loop-primer assisted isothermal amplification for the visual semi-quantitative detection of Toxoplasma gondii. Sens Actuators B Chem 372 132544.
  • [28] Alves, L. M., Rodovalho, V. R., Castro, A. C. H., Freitas, M. A. R., Mota, C. M., Mineo, T. W. P., Mineo, J. R., Madurro, J. M. and Brito-Madurro, A. G. (2017). Development of direct assays for Toxoplasma gondii and its use in genomic DNA sample. J Pharm Biomed Anal 145 838–44.
  • [29] Gokce, G., Erdem, A., Ceylan, C. and Akgöz, M. (2016). Voltammetric detection of sequence-selective DNA hybridization related to Toxoplasma gondii in PCR amplicons. Talanta 149 244–9.
  • [30] Safarpour, H., Pourhassan-Moghaddam, M., Spotin, A., Majdi, H., Barac, A., Yousefi, M. and Ahmadpour, E. (2021). A novel enhanced dot blot immunoassay using colorimetric biosensor for detection of Toxoplasma gondii infection. Comp Immunol Microbiol Infect Dis 79 101708.
  • [31] Takara, E. A., Pereira, S. V., Scala-Benuzzi, M. L., Fernández-Baldo, M. A., Raba, J. and Messina, G. A. (2019). Novel electrochemical sensing platform based on a nanocomposite of PVA/PVP/RGO applied to IgG anti- Toxoplasma gondii antibodies quantitation. Talanta 195 699–705.

Design of a Novel Electrochemical Immunosensor for Toxoplasma gondii Detection Based on Gold Nanoparticle/Chitosan Decorated Screen Printed Electrode

Year 2023, , 840 - 853, 31.12.2023
https://doi.org/10.18185/erzifbed.1370317

Abstract

Toxoplasma gondii is an intracellular parasite that primarily utilizes cats as its definitive host. This parasite, which is spread through cat feces, can be transmitted to other animals and, from there, to humans through various routes. In healthy individuals, this parasite may not cause severe illness, but it can be fatal, especially in individuals with weakened immune systems due to factors like chemotherapy or organ transplantation, as well as in fetuses developing in the womb. Given its relatively common occurrence worldwide, controlling the spread of this parasite is imperative. In this study, an antibody-based electrochemical biosensor was developed to directly detect Toxoplasma, offering potential applications in disease surveillance and management. The biosensor was designed using screen-printed electrodes, and the electrode surface was modified with chitosan and gold nanoparticles. Anti-Toxoplasma gondii antibodies were immobilized onto the modified electrode surface using glutaraldehyde as a cross-linking agent. Changes in surface properties were investigated using various techniques, including differential pulse voltammetry, cyclic voltammetry, and electrochemical impedance spectroscopy. The surface morphology of the developed immunosensor was visualized using scanning electron microscopy. Subsequently, the biosensor's linear working range and detection limit were determined, followed by its application in the detection of Toxoplasma gondii in synthetic serum samples. This innovative approach holds promise for the development of sensitive and specific diagnostic tools for Toxoplasma gondii infection, which is crucial for effective disease management and prevention, particularly in vulnerable populations.

Ethical Statement

There are no ethical issues regarding the publication of this study.

Supporting Institution

This work was supported by Ordu University Scientific Research Project Coordination (BAP)

Project Number

A-2337

References

  • [1] Dubey, J. P. and Jones, J. L. (2008). Toxoplasma gondii infection in humans and animals in the United States. Int J Parasitol 38 1257–78.
  • [2] Hill, D. E., Chirukandoth, S. and Dubey, J. P. (2005). Biology and epidemiology of Toxoplasma gondii in man and animals . Anim Health Res Rev 6 41–61.
  • [3] Chen, J., Xue, L., Hu, H., Yin, X., Cao, H. and Shen, B. (2022). MIC17A is a novel diagnostic marker for feline toxoplasmosis. Animal Diseases 2.
  • [4] Black, M. W. and Boothroyd, J. C. (2000). Lytic Cycle of Toxoplasma gondii . Microbiology and Molecular Biology Reviews 64 607–23.
  • [5] Pinto-Ferreira, F., Caldart, E. T., Pasquali, A. K. S., Mitsuka-Breganó, R., Freire, R. L. and Navarro, I. T. (2019). Patterns of transmission and sources of infection in outbreaks of human toxoplasmosis. Emerg Infect Dis 25 2177–82.
  • [6] Tong, W. H., Hlaváčová, J., Abdulai-Saiku, S., Kaňková, Š., Flegr, J. and Vyas, A. (2023). Presence of Toxoplasma gondii tissue cysts in human semen: Toxoplasmosis as a potential sexually transmissible infection. Journal of Infection 86 60–5.
  • [7] Kaňková, Hlaváčová, J. and Flegr, J. (2020). Oral sex: A new, and possibly the most dangerous, route of toxoplasmosis transmission. Med Hypotheses 141 109725.
  • [8] Paquet, C., Yudin, M. H., Allen, V. M., Bouchard, C., Boucher, M., Caddy, S., Castillo, E., Money, D. M., Murphy, K. E., Ogilvie, G., van Schalkwyk, J. and Senikas, V. (2013). Toxoplasmosis in Pregnancy: Prevention, Screening, and Treatment. Journal of Obstetrics and Gynaecology Canada 35 78–9.
  • [9] Gómez-Chávez, F., Murrieta-Coxca, J. M., Caballero-Ortega, H., Morales-Prieto, D. M. and Markert, U. R. (2023). Host-pathogen interactions mediated by extracellular vesicles in Toxoplasma gondii infection during pregnancy. J Reprod Immunol 158 103957.
  • [10] Jiang, S., Hua, E., Liang, M., Liu, B. and Xie, G. (2013). A novel immunosensor for detecting toxoplasma gondii-specific IgM based on goldmag nanoparticles and graphene sheets. Colloids Surf B Biointerfaces 101 481–6.
  • [11] Wesołowski, R., Pawłowska, M., Smoguła, M. and Szewczyk-Golec, K. (2023). Advances and Challenges in Diagnostics of Toxoplasmosis in HIV-Infected Patients. Pathogens 2023, Vol. 12, Page 110 12 110.
  • [12] Roche, A. D., Rowley, D., Brett, F. M. and Looby, S. (2018). Concentric and Eccentric Target MRI Signs in a Case of HIV-Associated Cerebral Toxoplasmosis. Case Rep Neurol Med 2018 1–3.
  • [13] Ozcelik, S., Alim, M. and Ozpinar, N. (2020). Detection of Toxoplasma gondii infection among diabetic patients in Turkey. Clin Epidemiol Glob Health 8 899–902.
  • [14] Sevimligul, G., Polat, Z. A. and Gokce, S. F. (2023). Toxoplasma gondii and multiple sclerosis: a population-based case-control seroprevalence study, Central Anatolia, Turkey. Mult Scler Relat Disord 78 104871.
  • [15] Molaei, S., Masoomeh Dadkhah and Fathi, F. (2023). Toxoplasmosis diagnostic techniques: Current developed methods and biosensors. Talanta 252 123828.
  • [16] Bulut, U., Sanli, S., Cevher, S. C., Cirpan, A., Donmez, S. and Timur, S. (2020). A biosensor platform based on amine functionalized conjugated benzenediamine-benzodithiophene polymer for testosterone analysis. J Appl Polym Sci 137.
  • [17] Sanli, S., Moulahoum, H., Ghorbanizamani, F., Celik, E. G. and Timur, S. (2020). Ultrasensitive covalently-linked Aptasensor for cocaine detection based on electrolytes-induced repulsion/attraction of colloids. Biomed Microdevices 22.
  • [18] Sharafeldin, M., McCaffrey, K. and Rusling, J. F. (2019). Influence of antibody immobilization strategy on carbon electrode immunoarrays. Analyst 144 5108–16.
  • [19] Sanli, S., Moulahoum, H., Ghorbanizamani, F., Gumus, Z. P. and Timur, S. (2020). On-Site Testosterone Biosensing for Doping Detection: Electrochemical Immunosensing via Functionalized Magnetic Nanoparticles and Screen-Printed Electrodes. ChemistrySelect 5 14911–6.
  • [20] Yılmaz Kabaca, A., Bilgi Kamaç, M., Yılmaz, M. and Atıcı, T. (2023). Ultra-sensitive electrochemical sensors for simultaneous determination of dopamine and serotonin based on titanium oxide-gold nanoparticles-poly Nile blue (in deep eutectic solvent). Electrochim Acta 467 143046.
  • [21] Wu, S., Li, K., Dai, X., Zhang, Z., Ding, F. and Li, S. (2020). An ultrasensitive electrochemical platform based on imprinted chitosan/gold nanoparticles/graphene nanocomposite for sensing cadmium (II) ions. Microchemical Journal 155 104710.
  • [22] Bonardd, S., Ramirez, O., Abarca, G., Leiva, Á., Saldías, C. and Díaz, D. D. (2022). Porous chitosan-based nanocomposites containing gold nanoparticles. Increasing the catalytic performance through film porosity. Int J Biol Macromol 217 864–77.
  • [23] Sanli, S., Celik, E. G., Demir, B., Gumus, Z. P., Ilktac, R., Aksuner, N., Demirkol, D. O. and Timur, S. (2018). Magnetic Nanofiber Layers as a Functional Surface for Biomolecule Immobilization and One-Use ‘Sensing in-a-Drop’ Applications. ChemistrySelect 3 13553–60.
  • [24] Durmus, C., Balaban Hanoglu, S., Harmanci, D., Moulahoum, H., Tok, K., Ghorbanizamani, F., Sanli, S., Zihnioglu, F., Evran, S., Cicek, C., Sertoz, R., Arda, B., Goksel, T., Turhan, K. and Timur, S. (2022). Indiscriminate SARS-CoV-2 multivariant detection using magnetic nanoparticle- based electrochemical immunosensing. Talanta 243.
  • [25] Oh, J.-W., Chun, C. and Chandrasekaran, M. Preparation and In Vitro Characterization of Chitosan Nanoparticles and Their Broad-Spectrum Antifungal Action Compared to Antibacterial Activities against Phytopathogens of Tomato.
  • [26] Rani, D., Nayak, B. and Srivastava, S. (2023). Smaller Sized Hepatitis E Virus ORF2 Protein-Chitosan Nanoemulsion Conjugate Elicits Improved Immune Response. Biointerface Res Appl Chem 13.
  • [27] Zhang, S., Lin, S., Zhu, L., Du, Z., Li, J., Wang, L. and Xu, W. (2022). Novel indicator and stem-loop-primer assisted isothermal amplification for the visual semi-quantitative detection of Toxoplasma gondii. Sens Actuators B Chem 372 132544.
  • [28] Alves, L. M., Rodovalho, V. R., Castro, A. C. H., Freitas, M. A. R., Mota, C. M., Mineo, T. W. P., Mineo, J. R., Madurro, J. M. and Brito-Madurro, A. G. (2017). Development of direct assays for Toxoplasma gondii and its use in genomic DNA sample. J Pharm Biomed Anal 145 838–44.
  • [29] Gokce, G., Erdem, A., Ceylan, C. and Akgöz, M. (2016). Voltammetric detection of sequence-selective DNA hybridization related to Toxoplasma gondii in PCR amplicons. Talanta 149 244–9.
  • [30] Safarpour, H., Pourhassan-Moghaddam, M., Spotin, A., Majdi, H., Barac, A., Yousefi, M. and Ahmadpour, E. (2021). A novel enhanced dot blot immunoassay using colorimetric biosensor for detection of Toxoplasma gondii infection. Comp Immunol Microbiol Infect Dis 79 101708.
  • [31] Takara, E. A., Pereira, S. V., Scala-Benuzzi, M. L., Fernández-Baldo, M. A., Raba, J. and Messina, G. A. (2019). Novel electrochemical sensing platform based on a nanocomposite of PVA/PVP/RGO applied to IgG anti- Toxoplasma gondii antibodies quantitation. Talanta 195 699–705.
There are 31 citations in total.

Details

Primary Language English
Subjects Electroanalytical Chemistry, Sensor Technology, Nanochemistry
Journal Section Makaleler
Authors

Serdar Şanlı 0000-0002-9048-287X

Project Number A-2337
Early Pub Date December 25, 2023
Publication Date December 31, 2023
Published in Issue Year 2023

Cite

APA Şanlı, S. (2023). Design of a Novel Electrochemical Immunosensor for Toxoplasma gondii Detection Based on Gold Nanoparticle/Chitosan Decorated Screen Printed Electrode. Erzincan University Journal of Science and Technology, 16(3), 840-853. https://doi.org/10.18185/erzifbed.1370317