Experimental Strategies on Climate Change Impacts: Climate Chamber Approach for Seagrass Meadows
Year 2024,
, 15 - 24, 31.12.2024
Enes Göksal
,
Büşra Nur Kuruoğlu
,
İnci Tüney Kızılkaya
,
Esra Öztürk Yiğit
Abstract
Seagrasses are vital to marine ecosystems, providing stability to coastal areas, acting as significant carbon sinks and supporting biodiversity. However, environmental changes, particularly climate change, are threatening seagrass habitats. The global extinction rate of seagrasses has increased significantly, with notable losses in the Mediterranean Sea. This decline is attributed to pollution, climate change, and rising temperatures, which impact seagrass growth, reproduction, and survival.
To study these effects, climate chamber systems simulating future climate scenarios were used. These systems, including aquariums and transparent bags, allow for controlled adjustments of climate variables such as CO2 concentration, temperature, and pH. Fieldwork conducted in Aliağa, İzmir, involved setting up these systems and collecting samples of the seagrass Cymodocea nodosa. The study revealed that aquarium systems were more stable and controllable than bag systems in field conditions.
The findings underscore the importance of climate chamber systems in understanding the ecological impact of climate change on seagrasses. These systems provide valuable insights for developing conservation strategies and managing marine ecosystems. Accurate simulation of future conditions is crucial for predicting and mitigating the effects of global warming on seagrass meadows and marine biodiversity
Ethical Statement
There are no ethical issues regarding the publication of this study. Sampling permissions received from the Ministry of Agriculture and Forestry General Directorate of Nature Conservation and National Parks number E-21264211-288.04-7929183.
Supporting Institution
TUBİTAK
Project Number
1919B012204812
Thanks
This study is being carried out with the support of TUBITAK 2209-A University Undergraduate Students Research Projects, numbered 1919B012204812. We would like to thank TUBITAK for their contributions.
References
- [1] Waycott, M., Duarte, C.M., Carruthers, T.J., Orth, R.J., Dennison, W.C., et al. (2009) Accelerating loss of seagrasses across the globe threatens coastal ecosystems, Proceedings of the National Academy of Sciences of the United States of America, 106(30), 12377-81.
- [2] Schliep, M., Pernice, M., Sinutok, S., Bryant, C. V., York, P. H., Rasheed, M. A., and Ralph, P. J., (2015) Evaluation of Reference Genes for RT-qPCR Studies in the Seagrass Zostera muelleri Exposed to Light Limitation, Scientific Reports, 5:17051.
- [3] Koch, M., Bowes, G., Ross, C., and Zhang, X-H., (2013) Climate change and ocean acidification effects on seagrasses and marine macroalgae, Global Change Biology, 19, 103- 132.
- [4] Duarte, C.M., Middelburg, J.J., and Caraco, N., (2005) Major role of marine vegetation on the oceanic carbon cycle, Biogeosciences, 2, 1–8.
- [5] Piazzi, L., Balata, D., and Ceccherelli, G., (2015) Epiphyte assemblages of the Mediterranean seagrass Posidonia oceanica: an overview, Marine Ecology, 37, 2- 41.
- [6] Marbà, N., Díaz-Almela, E., and Duarte, C.M., (2014) Mediterranean seagrass (Posidonia oceanica) loss between 1842 and 2009, Biological Conservation, 176, 183- 190.
- [7] Mazella L., Scipione, M.B., Gambi, M.C., Buia, M.C., (1993) The First International Conference on the Mediterranean Coastal Environment, MEDCOAST 93, At: Antalya, Turkey, 2-5 November, 103-116.
- [8] Cancemi, G., Buia, M.C., and Mazella, L., (2002) Structure and growth Dynamics of Cymodocea nodosa meadows, Scientia Marina, 66(4), 365- 373.
- [9] Cressey, D., (2009) Vital marine habitat under threat. Nature.
- [10] Koch, M.S., Schopmeyer, A., Kyhn-Hansen, C., & Madden, C.J., (2007) Synergistic effects of high temperature and sulfide on tropical seagrass. Journal of Experimental Marine Biology and Ecology, 341, 91–101.
- [11] Hoffle, H., Thomsen, M.S., & Holmer, M., (2011) High mortality of Zostera marina under high temperature regimes but minor effects of the invasive macroalgae Gracilaria vermiculophylla. Estuarine. Estuarine, Coastal and Shelf Science, 92, 35–46.
- [12] Marbà, N., Duarte, C. M., Cebrián, J., Gallegos, M. E., Olesen, B., and Sand-Jensen, K., (1996) Growth and population dynamics of Posidonia oceanica on the Spanish Mediterranean coast: elucidating seagrass decline, Marine Ecology Progress Series, 137, 203- 213 s.
- [13] Short, F.T. & Neckles, H.A., (1999) The effects of global climate change on seagrasses, Aquatic Botany, 63,169-196.
- [14] Marba, N. and Duarte, C.M., (2010), Mediterranean warming triggers seagrass (Posidonia oceanica) shoot mortality, Global Change Biology, 16: 2366-2375.
- [15] Nguyen, H. M., Kim, M., Ralph, P.J., Marín-Guirao, L., Pernice, M., and Procaccini, G., (2020) Stress Memory in Seagrasses: First Insight Into the Effects of Thermal Priming and the Role of Epigenetic Modifications, Front. Plant Sci., 11:494.
- [16] Ontoria, Y., Gonzalez-Guedes, E., Sanmartí, N., Bernardeau-Esteller, J., Ruiz, J.M., Romero, J., Pérez, M., (2019) Interactive effects of global warming and eutrophication on a fast-growing Mediterranean seagrass, Marine Environmental Research, 145, 27-38.
- [17] IPCC, (2014) Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, [Core Writing Team, R.K. Pachauri and L.A. Meyer (eds.)], Geneva, Switzerland, 151 pp.
- [18] Doney, S.C., Fabry, V.C., Feely, R.A., and Kleypas, J.A., (2009) Ocean Acidification: The Other CO2 Problem, Annual Review of Marine Science, 1:169–92 s.
- [19] Orr, J.C., Fabry, V. J., Aumont, O., Bopp, L., Doney, S. C., Feely, R. A., Gnanadesikan, A., Gruber, N., Ishida, A., Joos, F., Key, R. M., Lindsay, K., Maier-Reimer, E., Matear, R., Monfray, P., Mouchet, A., Najjar, R.G., Plattner, G. K., Rodgers, K.B., Sabine, C.L., Sarmiento, J. L., Schlitzer, R., Slater, R.D., Totterdell, I. J., Weirig, M.F., Yamanaka, Y., and Yool, A., (2005) Anthropogenic ocean acidification over the twenty-first century and its impact on calcifying organisms, Nature, 437, 29.
- [20] Martin, S., Rodolfo-Metalpa, R., Ransome, E., Rowley, S., Buia, M., Gattuso, J., & Hall- Spencer, J., (2008) Effects of naturally acidified seawater on seagrass calcareous epibionts. Biology Letters, 4, 689–692.
- [21] IPCC, (2021) Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change
- [22] Olivé, I., Silva, J., Lauritano, C., Costa, M.M., et al. (2017) Linking gene expression to productivity to unravel long- and short-term responses of seagrasses exposed to CO2 in volcanic vents, Scientific Reports, 7: 42278.
- [23] Campbell, J.E., & Fourqurean, J.W., (2011) Novel methodology for in situ carbon dioxide enrichment of benthic ecosystems. Limnology and Oceanography:Methods, 9, 97–109.
- [24] Campbell, J.E., & Fourqurean, J.W., (2013) Effects of in situ CO2 enrichment on the structural and chemical characteristics of the seagrass Thalassia testudinum. Marine Biology, 160,1465-1475.
- [25] Oscar, M.A., Barak, S. and Winters, G., (2018) The Tropical Invasive Seagrass, Halophila stipulacea, Has a Superior Ability to Tolerate Dynamic Changes in Salinity Levels Compared to Its Freshwater Relative, Vallisneria americana. Front. Plant Sci. 9:950. doi: 10.3389/fpls.2018.00950
24
Experimental Strategies on Climate Change Impacts: Climate Chamber Approach for Seagrass Meadows
Year 2024,
, 15 - 24, 31.12.2024
Enes Göksal
,
Büşra Nur Kuruoğlu
,
İnci Tüney Kızılkaya
,
Esra Öztürk Yiğit
Project Number
1919B012204812
References
- [1] Waycott, M., Duarte, C.M., Carruthers, T.J., Orth, R.J., Dennison, W.C., et al. (2009) Accelerating loss of seagrasses across the globe threatens coastal ecosystems, Proceedings of the National Academy of Sciences of the United States of America, 106(30), 12377-81.
- [2] Schliep, M., Pernice, M., Sinutok, S., Bryant, C. V., York, P. H., Rasheed, M. A., and Ralph, P. J., (2015) Evaluation of Reference Genes for RT-qPCR Studies in the Seagrass Zostera muelleri Exposed to Light Limitation, Scientific Reports, 5:17051.
- [3] Koch, M., Bowes, G., Ross, C., and Zhang, X-H., (2013) Climate change and ocean acidification effects on seagrasses and marine macroalgae, Global Change Biology, 19, 103- 132.
- [4] Duarte, C.M., Middelburg, J.J., and Caraco, N., (2005) Major role of marine vegetation on the oceanic carbon cycle, Biogeosciences, 2, 1–8.
- [5] Piazzi, L., Balata, D., and Ceccherelli, G., (2015) Epiphyte assemblages of the Mediterranean seagrass Posidonia oceanica: an overview, Marine Ecology, 37, 2- 41.
- [6] Marbà, N., Díaz-Almela, E., and Duarte, C.M., (2014) Mediterranean seagrass (Posidonia oceanica) loss between 1842 and 2009, Biological Conservation, 176, 183- 190.
- [7] Mazella L., Scipione, M.B., Gambi, M.C., Buia, M.C., (1993) The First International Conference on the Mediterranean Coastal Environment, MEDCOAST 93, At: Antalya, Turkey, 2-5 November, 103-116.
- [8] Cancemi, G., Buia, M.C., and Mazella, L., (2002) Structure and growth Dynamics of Cymodocea nodosa meadows, Scientia Marina, 66(4), 365- 373.
- [9] Cressey, D., (2009) Vital marine habitat under threat. Nature.
- [10] Koch, M.S., Schopmeyer, A., Kyhn-Hansen, C., & Madden, C.J., (2007) Synergistic effects of high temperature and sulfide on tropical seagrass. Journal of Experimental Marine Biology and Ecology, 341, 91–101.
- [11] Hoffle, H., Thomsen, M.S., & Holmer, M., (2011) High mortality of Zostera marina under high temperature regimes but minor effects of the invasive macroalgae Gracilaria vermiculophylla. Estuarine. Estuarine, Coastal and Shelf Science, 92, 35–46.
- [12] Marbà, N., Duarte, C. M., Cebrián, J., Gallegos, M. E., Olesen, B., and Sand-Jensen, K., (1996) Growth and population dynamics of Posidonia oceanica on the Spanish Mediterranean coast: elucidating seagrass decline, Marine Ecology Progress Series, 137, 203- 213 s.
- [13] Short, F.T. & Neckles, H.A., (1999) The effects of global climate change on seagrasses, Aquatic Botany, 63,169-196.
- [14] Marba, N. and Duarte, C.M., (2010), Mediterranean warming triggers seagrass (Posidonia oceanica) shoot mortality, Global Change Biology, 16: 2366-2375.
- [15] Nguyen, H. M., Kim, M., Ralph, P.J., Marín-Guirao, L., Pernice, M., and Procaccini, G., (2020) Stress Memory in Seagrasses: First Insight Into the Effects of Thermal Priming and the Role of Epigenetic Modifications, Front. Plant Sci., 11:494.
- [16] Ontoria, Y., Gonzalez-Guedes, E., Sanmartí, N., Bernardeau-Esteller, J., Ruiz, J.M., Romero, J., Pérez, M., (2019) Interactive effects of global warming and eutrophication on a fast-growing Mediterranean seagrass, Marine Environmental Research, 145, 27-38.
- [17] IPCC, (2014) Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, [Core Writing Team, R.K. Pachauri and L.A. Meyer (eds.)], Geneva, Switzerland, 151 pp.
- [18] Doney, S.C., Fabry, V.C., Feely, R.A., and Kleypas, J.A., (2009) Ocean Acidification: The Other CO2 Problem, Annual Review of Marine Science, 1:169–92 s.
- [19] Orr, J.C., Fabry, V. J., Aumont, O., Bopp, L., Doney, S. C., Feely, R. A., Gnanadesikan, A., Gruber, N., Ishida, A., Joos, F., Key, R. M., Lindsay, K., Maier-Reimer, E., Matear, R., Monfray, P., Mouchet, A., Najjar, R.G., Plattner, G. K., Rodgers, K.B., Sabine, C.L., Sarmiento, J. L., Schlitzer, R., Slater, R.D., Totterdell, I. J., Weirig, M.F., Yamanaka, Y., and Yool, A., (2005) Anthropogenic ocean acidification over the twenty-first century and its impact on calcifying organisms, Nature, 437, 29.
- [20] Martin, S., Rodolfo-Metalpa, R., Ransome, E., Rowley, S., Buia, M., Gattuso, J., & Hall- Spencer, J., (2008) Effects of naturally acidified seawater on seagrass calcareous epibionts. Biology Letters, 4, 689–692.
- [21] IPCC, (2021) Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change
- [22] Olivé, I., Silva, J., Lauritano, C., Costa, M.M., et al. (2017) Linking gene expression to productivity to unravel long- and short-term responses of seagrasses exposed to CO2 in volcanic vents, Scientific Reports, 7: 42278.
- [23] Campbell, J.E., & Fourqurean, J.W., (2011) Novel methodology for in situ carbon dioxide enrichment of benthic ecosystems. Limnology and Oceanography:Methods, 9, 97–109.
- [24] Campbell, J.E., & Fourqurean, J.W., (2013) Effects of in situ CO2 enrichment on the structural and chemical characteristics of the seagrass Thalassia testudinum. Marine Biology, 160,1465-1475.
- [25] Oscar, M.A., Barak, S. and Winters, G., (2018) The Tropical Invasive Seagrass, Halophila stipulacea, Has a Superior Ability to Tolerate Dynamic Changes in Salinity Levels Compared to Its Freshwater Relative, Vallisneria americana. Front. Plant Sci. 9:950. doi: 10.3389/fpls.2018.00950
24