Year 2024,
, 82 - 98, 31.12.2024
Ayşegül İnam
,
Nihal Özel
,
Zülal Günay
,
Murat Elibol
References
- [1] Bagherzade, G., Tavakoli, M. M., & Namaei, M. H. (2017). Green synthesis of silver nanoparticles using aqueous extract of saffron (Crocus sativus L.) wastages and its antibacterial activity against six bacteria. Asian Pacific Journal of Tropical Biomedicine, 7(3), 227-233.
- [2] Ahmed, S., Ahmad, M., Swami, B. L., & Ikram, S. (2016). A review on plants extract mediated synthesis of silver nanoparticles for antimicrobial applications: a green expertise. Journal of advanced research, 7(1), 17-28.
- [3] Ahmad, S., Munir, S., Zeb, N., Ullah, A., Khan, B., Ali, J., ... & Ali, S. (2019). Green nanotechnology: A review on green synthesis of silver nanoparticles—An ecofriendly approach. International journal of nanomedicine, 5087-5107.
- [4] Ahmad, N., Sharma, S., Alam, M. K., Singh, V. N., Shamsi, S. F., Mehta, B. R., & Fatma, A. (2010). Rapid synthesis of silver nanoparticles using dried medicinal plant of basil. Colloids and Surfaces B: Biointerfaces, 81(1), 81-86.
- [5] Salayová, A., Bedlovičová, Z., Daneu, N., Baláž, M., Lukáčová Bujňáková, Z., Balážová, Ľ., & Tkáčiková, Ľ. (2021). Green synthesis of silver nanoparticles with antibacterial activity using various medicinal plant extracts: Morphology and antibacterial efficacy. Nanomaterials, 11(4), 1005.
- [6] Achamlale, S., Rezzonico, B., & Grignon-Dubois, M. (2009). Rosmarinic acid from beach waste: Isolation and HPLC quantification in Zostera detritus from Arcachon lagoon. Food Chemistry, 113(4), 878-883.
- [7] Benito-González, I., López-Rubio, A., Martínez-Abad, A., Ballester, A. R., Falcó, I., González-Candelas, L., ... & Martínez-Sanz, M. (2019). In-depth characterization of bioactive extracts from Posidonia oceanica waste biomass. Marine drugs, 17(7), 409.
- [8] Dubois, M., Gilles, K. A., Hamilton, J. K., Rebers, P. T., & Smith, F. (1956). Colorimetric method for determination of sugars and related substances. Analytical chemistry, 28(3), 350- 356.
- [9] Miceli, N., Trovato, A., Dugo, P., Cacciola, F., Donato, P., Marino, A., ... & Taviano, M. F. (2009). Comparative analysis of flavonoid profile, antioxidant and antimicrobial activity of the berries of Juniperus communis L. var. communis and Juniperus communis L. var. saxatilis Pall. from Turkey. Journal of agricultural and food chemistry, 57(15), 6570-6577.
- [10] Biemer, J.J. (1973) Antimicrobial susceptibility testing by the Kirby-Bauer disc diffusion method. Ann Clin Lab Sci 3: 135–140.
- [11] Hudzicki, J. (2012) Kirby-Bauer Disk Diffusion Susceptibility Test Protocol Author Information. Am Soc Microbiol 1–13.
- [12] Shameli, K., Ahmad, M. B., Jazayeri, S. D., Shabanzadeh, P., Sangpour, P., Jahangirian, H., & Gharayebi, Y. (2012). Investigation of antibacterial properties silver nanoparticles prepared via green method. Chemistry Central Journal, 6, 1-10.
- [13] Noake, T., Kuriyama, T., White, P.L., Potts, A.J.C., Lewis, M.A.O., Williams, D.W., and Barnes, R.A. (2007) Antifungal susceptibility of Candida species using the clinical and laboratory standards institute disk diffusion and broth microdilution methods. J Chemother 19: 283–287.
- [14] EUCAST (2020) Breakpoint tables for interpretation of MICs for antifungal agents.
- [15] Seyrekoğlu, F. Temiz, H. Effect of Extraction Conditions on the Phenolic Content and DPPH Radical Scavenging Activity of Hypericum perforatum L. Turkish Journal of Agriculture-Food Science and Technology. 2020, 8(1), 226-229.
- [16] Khanna, P., Kaur, A., & Goyal, D. (2019). Algae-based metallic nanoparticles: Synthesis, characterization and applications. Journal of microbiological methods, 163, 105656.
- [17] Messina, C. M., Arena, R., Manuguerra, S., Pericot, Y., Curcuraci, E., Kerninon, F., ... & Santulli, A. (2021). Antioxidant bioactivity of extracts from beach cast leaves of Posidonia oceanica (L.) Delile. Marine Drugs, 19(10), 560
- [18] Chen, J., Yang, J., Ma, L., Li, J., Shahzad, N., & Kim, C. K. (2020). Structure-antioxidant activity relationship of methoxy, phenolic hydroxyl, and carboxylic acid groups of phenolic acids. Scientific reports, 10(1), 2611.
- [19] Valsalam, S., Agastian, P., Arasu, M. V., Al-
Dhabi, N. A., Ghilan, A. K. M., Kaviyarasu, K., ... & Arokiyaraj, S. (2019). Rapid biosynthesis and characterization of silver nanoparticles from the leaf extract of Tropaeolum majus L. and its enhanced in-vitro antibacterial, antifungal, antioxidant and anticancer properties. Journal of Photochemistry and Photobiology B: Biology, 191, 65-74.
- [20] Behravan, M., Panahi, A. H., Naghizadeh, A., Ziaee, M., Mahdavi, R., & Mirzapour, A. (2019). Facile green synthesis of silver nanoparticles using Berberis vulgaris leaf and root aqueous extract and its antibacterial activity. International journal of biological macromolecules, 124, 148-154.
- [21] Masarudin, M. J., Cutts, S. M., Evison, B. J., Phillips, D. R., & Pigram, P. J. (2015). Factors determining the stability, size distribution, and cellular accumulation of small, monodisperse chitosan nanoparticles as candidate vectors for anticancer drug delivery: application to the passive encapsulation of [14C]-doxorubicin. Nanotechnology, science and applications, 67-80.
- [22] Honary, S., Barabadi, H., Gharaei-Fathabad, E., & Naghibi, F. (2013). Green synthesis of silver nanoparticles induced by the fungus Penicillium citrinum. Tropical Journal of Pharmaceutical Research, 12(1), 7-11.
- [23] Grand, J., Auguié, B., & Le Ru, E. C. (2019). Combined extinction and absorption UV– visible spectroscopy as a method for revealing shape imperfections of metallic nanoparticles. Analytical chemistry, 91(22), 14639-14648.
- [24] Soto, K. M., Quezada-Cervantes, C. T., Hernández-Iturriaga, M., Luna-Bárcenas, G., Vazquez-Duhalt, R., & Mendoza, S. (2019). Fruit peels waste for the green synthesis of silver nanoparticles with antimicrobial activity against foodborne pathogens. Lwt, 103, 293-300.
- [25] Widatalla, H. A., Yassin, L. F., Alrasheid, A. A., Ahmed, S. A. R., Widdatallah, M. O., Eltilib, S. H., & Mohamed, A. A. (2022). Green synthesis of silver nanoparticles using green tea leaf extract, characterization and evaluation of antimicrobial activity. Nanoscale Advances, 4(3), 911-915.
- [26] Sathishkumar, R. S., Sundaramanickam, A., Srinath, R., Ramesh, T., Saranya, K., Meena, M., & Surya, P. (2019). Green synthesis of silver nanoparticles by bloom forming marine microalgae Trichodesmium erythraeum and its applications in antioxidant, drug-resistant bacteria, and cytotoxicity activity. Journal of Saudi Chemical Society, 23(8), 1180-1191.
- [27] Mani, A., Author, C., Elizabeth Mani, A., Bharathi, V., and Patterson, J. (2012) Antibacterial Activity and Preliminary Phytochemical Analysis of Sea Grass Cymodocea rotundata. Int J Microbiol Res 3: 99–103.
- [28] Gono, C.M.P., Ahmadi, P., Hertiani, T., Septiana, E., Putra, M.Y., and Chianese, G. (2022) A Comprehensive Update on the Bioactive Compounds from Seagrasses. Mar Drugs 20: 1–37.
- [29] Othman, M., San Loh, H., Wiart, C., Khoo, T. J., Lim, K. H., & Ting, K. N. (2011). Optimal methods for evaluating antimicrobial activities from plant extracts. Journal of Microbiological Methods, 84(2), 161-166.
- [30] Haase, H., Jordan, L., Keitel, L., Keil, C., & Mahltig, B. (2017). Comparison of methods for determining the effectiveness of antibacterial functionalized textiles. PLoS One, 12(11), e0188304.
- [31] Woo, K.J., Hye, C.K., Ki, W.K., Shin, S., So, H.K., and Yong, H.P. (2008) Antibacterial activity and mechanism of action of the silver ion in Staphylococcus aureus and Escherichia coli. Appl Environ Microbiol 74: 2171–2178.
- [32] Kannan, R.R.R., Arumugam, R., and Anantharaman, P. (2010) Antibacterial potential of three seagrasses against human pathogens. Asian Pac J Trop Med 3: 890–893.
- [33] Salman, H. D. (2017). Evaluation and comparison the antibacterial activity of silver nano particles (AgNPs) and silver nitrate (AgNO3) on some pathogenic bacteria. J. Glob. Pharma Technol, 9, 238-248.
- [34] Chakravarty, A., Ahmad, I., Singh, P., Sheikh, M. U. D., Aalam, G., Sagadevan, S., & Ikram, S. (2022). Green synthesis of silver nanoparticles using fruits extracts of Syzygium cumini and their bioactivity. Chemical Physics Letters, 795, 139493.
- [35] Jain, A., Kongkham, B., Puttaswamy, H., Butola, B. S., Malik, H. K., & Malik, A. (2022). Development of wash-durable antimicrobial cotton fabrics by in situ green synthesis of silver nanoparticles and investigation of their antimicrobial efficacy against drug-resistant bacteria. Antibiotics, 11(7), 864.
- [36] Ahmed, S., Ahmad, M., Swami, B. L., & Ikram, S. (2016). Green synthesis of silver nanoparticles using Azadirachta indica aqueous leaf extract. Journal of radiation research and applied sciences, 9(1), 1-7.
Production of Silver Nanoparticles from Seagrass Wastes by Green Synthesis and Determination of Their Antimicrobial Activities
Year 2024,
, 82 - 98, 31.12.2024
Ayşegül İnam
,
Nihal Özel
,
Zülal Günay
,
Murat Elibol
Abstract
Green synthesis of silver nanoparticles (AgNPs) has attracted great interest in the field of nanotechnology due to their antimicrobial and antioxidant properties in different applications. Posidonia leaves, known as seagrasses, detach from their stems during their life cycle and are carried by sea currents to form deposits on the shore. These biomass wastes hold the potential to be a source for nanoparticle synthesis. In this study, we present the synthesis of AgNPs using seagrass wastes without any chemical stabilizers or reducers. The aqueous extract is used as a reducing agent for synthesizing AgNPs at room temperature. The total phenolic and carbohydrate contents of extracts were analyzed using spectrophotometric methods. Ultraviolet-visible spectroscopy (UV–Vis), dynamic light scattering (DLS), Fourier transform infrared spectroscopy (FTIR), and X-ray diffraction (XRD) were used to characterize the synthesized nanoparticles. The visual color change confirmed the formation of AgNPs. The UV-visible spectrophotometer showed an absorption peak at 420 nm. DLS measurements estimated the AgNPs size at approximately 50 nm. The AgNPs exhibited antibacterial activity against Gram-positive (Staphylococcus aureus) and Gram-negative (Escherichia coli) microorganisms and antifungal activity against Candida glabrata. Antioxidant activities of the aqueous extract and AgNPs were also evaluated. This study highlights the successful use of a waste biological material in AgNPs production via green synthesis methods, showing promise across various fields.
References
- [1] Bagherzade, G., Tavakoli, M. M., & Namaei, M. H. (2017). Green synthesis of silver nanoparticles using aqueous extract of saffron (Crocus sativus L.) wastages and its antibacterial activity against six bacteria. Asian Pacific Journal of Tropical Biomedicine, 7(3), 227-233.
- [2] Ahmed, S., Ahmad, M., Swami, B. L., & Ikram, S. (2016). A review on plants extract mediated synthesis of silver nanoparticles for antimicrobial applications: a green expertise. Journal of advanced research, 7(1), 17-28.
- [3] Ahmad, S., Munir, S., Zeb, N., Ullah, A., Khan, B., Ali, J., ... & Ali, S. (2019). Green nanotechnology: A review on green synthesis of silver nanoparticles—An ecofriendly approach. International journal of nanomedicine, 5087-5107.
- [4] Ahmad, N., Sharma, S., Alam, M. K., Singh, V. N., Shamsi, S. F., Mehta, B. R., & Fatma, A. (2010). Rapid synthesis of silver nanoparticles using dried medicinal plant of basil. Colloids and Surfaces B: Biointerfaces, 81(1), 81-86.
- [5] Salayová, A., Bedlovičová, Z., Daneu, N., Baláž, M., Lukáčová Bujňáková, Z., Balážová, Ľ., & Tkáčiková, Ľ. (2021). Green synthesis of silver nanoparticles with antibacterial activity using various medicinal plant extracts: Morphology and antibacterial efficacy. Nanomaterials, 11(4), 1005.
- [6] Achamlale, S., Rezzonico, B., & Grignon-Dubois, M. (2009). Rosmarinic acid from beach waste: Isolation and HPLC quantification in Zostera detritus from Arcachon lagoon. Food Chemistry, 113(4), 878-883.
- [7] Benito-González, I., López-Rubio, A., Martínez-Abad, A., Ballester, A. R., Falcó, I., González-Candelas, L., ... & Martínez-Sanz, M. (2019). In-depth characterization of bioactive extracts from Posidonia oceanica waste biomass. Marine drugs, 17(7), 409.
- [8] Dubois, M., Gilles, K. A., Hamilton, J. K., Rebers, P. T., & Smith, F. (1956). Colorimetric method for determination of sugars and related substances. Analytical chemistry, 28(3), 350- 356.
- [9] Miceli, N., Trovato, A., Dugo, P., Cacciola, F., Donato, P., Marino, A., ... & Taviano, M. F. (2009). Comparative analysis of flavonoid profile, antioxidant and antimicrobial activity of the berries of Juniperus communis L. var. communis and Juniperus communis L. var. saxatilis Pall. from Turkey. Journal of agricultural and food chemistry, 57(15), 6570-6577.
- [10] Biemer, J.J. (1973) Antimicrobial susceptibility testing by the Kirby-Bauer disc diffusion method. Ann Clin Lab Sci 3: 135–140.
- [11] Hudzicki, J. (2012) Kirby-Bauer Disk Diffusion Susceptibility Test Protocol Author Information. Am Soc Microbiol 1–13.
- [12] Shameli, K., Ahmad, M. B., Jazayeri, S. D., Shabanzadeh, P., Sangpour, P., Jahangirian, H., & Gharayebi, Y. (2012). Investigation of antibacterial properties silver nanoparticles prepared via green method. Chemistry Central Journal, 6, 1-10.
- [13] Noake, T., Kuriyama, T., White, P.L., Potts, A.J.C., Lewis, M.A.O., Williams, D.W., and Barnes, R.A. (2007) Antifungal susceptibility of Candida species using the clinical and laboratory standards institute disk diffusion and broth microdilution methods. J Chemother 19: 283–287.
- [14] EUCAST (2020) Breakpoint tables for interpretation of MICs for antifungal agents.
- [15] Seyrekoğlu, F. Temiz, H. Effect of Extraction Conditions on the Phenolic Content and DPPH Radical Scavenging Activity of Hypericum perforatum L. Turkish Journal of Agriculture-Food Science and Technology. 2020, 8(1), 226-229.
- [16] Khanna, P., Kaur, A., & Goyal, D. (2019). Algae-based metallic nanoparticles: Synthesis, characterization and applications. Journal of microbiological methods, 163, 105656.
- [17] Messina, C. M., Arena, R., Manuguerra, S., Pericot, Y., Curcuraci, E., Kerninon, F., ... & Santulli, A. (2021). Antioxidant bioactivity of extracts from beach cast leaves of Posidonia oceanica (L.) Delile. Marine Drugs, 19(10), 560
- [18] Chen, J., Yang, J., Ma, L., Li, J., Shahzad, N., & Kim, C. K. (2020). Structure-antioxidant activity relationship of methoxy, phenolic hydroxyl, and carboxylic acid groups of phenolic acids. Scientific reports, 10(1), 2611.
- [19] Valsalam, S., Agastian, P., Arasu, M. V., Al-
Dhabi, N. A., Ghilan, A. K. M., Kaviyarasu, K., ... & Arokiyaraj, S. (2019). Rapid biosynthesis and characterization of silver nanoparticles from the leaf extract of Tropaeolum majus L. and its enhanced in-vitro antibacterial, antifungal, antioxidant and anticancer properties. Journal of Photochemistry and Photobiology B: Biology, 191, 65-74.
- [20] Behravan, M., Panahi, A. H., Naghizadeh, A., Ziaee, M., Mahdavi, R., & Mirzapour, A. (2019). Facile green synthesis of silver nanoparticles using Berberis vulgaris leaf and root aqueous extract and its antibacterial activity. International journal of biological macromolecules, 124, 148-154.
- [21] Masarudin, M. J., Cutts, S. M., Evison, B. J., Phillips, D. R., & Pigram, P. J. (2015). Factors determining the stability, size distribution, and cellular accumulation of small, monodisperse chitosan nanoparticles as candidate vectors for anticancer drug delivery: application to the passive encapsulation of [14C]-doxorubicin. Nanotechnology, science and applications, 67-80.
- [22] Honary, S., Barabadi, H., Gharaei-Fathabad, E., & Naghibi, F. (2013). Green synthesis of silver nanoparticles induced by the fungus Penicillium citrinum. Tropical Journal of Pharmaceutical Research, 12(1), 7-11.
- [23] Grand, J., Auguié, B., & Le Ru, E. C. (2019). Combined extinction and absorption UV– visible spectroscopy as a method for revealing shape imperfections of metallic nanoparticles. Analytical chemistry, 91(22), 14639-14648.
- [24] Soto, K. M., Quezada-Cervantes, C. T., Hernández-Iturriaga, M., Luna-Bárcenas, G., Vazquez-Duhalt, R., & Mendoza, S. (2019). Fruit peels waste for the green synthesis of silver nanoparticles with antimicrobial activity against foodborne pathogens. Lwt, 103, 293-300.
- [25] Widatalla, H. A., Yassin, L. F., Alrasheid, A. A., Ahmed, S. A. R., Widdatallah, M. O., Eltilib, S. H., & Mohamed, A. A. (2022). Green synthesis of silver nanoparticles using green tea leaf extract, characterization and evaluation of antimicrobial activity. Nanoscale Advances, 4(3), 911-915.
- [26] Sathishkumar, R. S., Sundaramanickam, A., Srinath, R., Ramesh, T., Saranya, K., Meena, M., & Surya, P. (2019). Green synthesis of silver nanoparticles by bloom forming marine microalgae Trichodesmium erythraeum and its applications in antioxidant, drug-resistant bacteria, and cytotoxicity activity. Journal of Saudi Chemical Society, 23(8), 1180-1191.
- [27] Mani, A., Author, C., Elizabeth Mani, A., Bharathi, V., and Patterson, J. (2012) Antibacterial Activity and Preliminary Phytochemical Analysis of Sea Grass Cymodocea rotundata. Int J Microbiol Res 3: 99–103.
- [28] Gono, C.M.P., Ahmadi, P., Hertiani, T., Septiana, E., Putra, M.Y., and Chianese, G. (2022) A Comprehensive Update on the Bioactive Compounds from Seagrasses. Mar Drugs 20: 1–37.
- [29] Othman, M., San Loh, H., Wiart, C., Khoo, T. J., Lim, K. H., & Ting, K. N. (2011). Optimal methods for evaluating antimicrobial activities from plant extracts. Journal of Microbiological Methods, 84(2), 161-166.
- [30] Haase, H., Jordan, L., Keitel, L., Keil, C., & Mahltig, B. (2017). Comparison of methods for determining the effectiveness of antibacterial functionalized textiles. PLoS One, 12(11), e0188304.
- [31] Woo, K.J., Hye, C.K., Ki, W.K., Shin, S., So, H.K., and Yong, H.P. (2008) Antibacterial activity and mechanism of action of the silver ion in Staphylococcus aureus and Escherichia coli. Appl Environ Microbiol 74: 2171–2178.
- [32] Kannan, R.R.R., Arumugam, R., and Anantharaman, P. (2010) Antibacterial potential of three seagrasses against human pathogens. Asian Pac J Trop Med 3: 890–893.
- [33] Salman, H. D. (2017). Evaluation and comparison the antibacterial activity of silver nano particles (AgNPs) and silver nitrate (AgNO3) on some pathogenic bacteria. J. Glob. Pharma Technol, 9, 238-248.
- [34] Chakravarty, A., Ahmad, I., Singh, P., Sheikh, M. U. D., Aalam, G., Sagadevan, S., & Ikram, S. (2022). Green synthesis of silver nanoparticles using fruits extracts of Syzygium cumini and their bioactivity. Chemical Physics Letters, 795, 139493.
- [35] Jain, A., Kongkham, B., Puttaswamy, H., Butola, B. S., Malik, H. K., & Malik, A. (2022). Development of wash-durable antimicrobial cotton fabrics by in situ green synthesis of silver nanoparticles and investigation of their antimicrobial efficacy against drug-resistant bacteria. Antibiotics, 11(7), 864.
- [36] Ahmed, S., Ahmad, M., Swami, B. L., & Ikram, S. (2016). Green synthesis of silver nanoparticles using Azadirachta indica aqueous leaf extract. Journal of radiation research and applied sciences, 9(1), 1-7.