Research Article
BibTex RIS Cite

Nanopartikül İlavesinin Biyohidrojen Üretimine Etkisi

Year 2024, , 116 - 128, 31.12.2024
https://doi.org/10.18185/erzifbed.1523588

Abstract

Hızlı nüfus artışı ve tüketim, enerji talebinde artışa yol açmaktadır. Enerji üretiminde en yaygın kullanılan
fosil yakıtlar tükenmektedir ve daha da önemlisi, bunların yanması karbondioksit (CO 2 ) salımına yol açarak
küresel ısınma ve iklim değişikliğini tetiklemektedir. Bu nedenle, son zamanlardaki çalışmalar, yeşil hidrojen
üretimini artırmaya yoğunlaşmıştır [1-2].Bu çalışmalra paralel olarak biy0hidrojen çalışmalarına duyulan ilgi
de önemli oranda artmaktadır.
Bu çalışmada, biyohidrojen üretimini artırmak için yüksek sıcaklık (110°C'de 10 dakika), asidik koşullar (pH
2-5.5) ve nanoparçacık ekleme (manyetit nanopartikül; Ege Üniversitesi, Fen Fakültesi, Biyokimya
Bölümü'nden temin edilmiştir) yöntemleri test edilmiştir. Bu amaçla, öncelikle aşı çamur, 110°C'de 10 dakika
boyunca otoklavlanmıştır. Bu ön işleme adımlarının ardından, biyohidrojen üretimini araştırmak için dört
farklı deneme seti (R1: pH 5.5, R2: pH 5.5 + 5mg/L Fe3O4 NP, R3: pH 7, R4: pH 7 + 5mg/L Fe3O4 NP)
oluşturulmuştur. Reaktörler, 38°C'de statik koşullarda, 2-4 g KOİ/gün günlük beslemeli olarak çalıştırılmıştır.
Üretilen biyogazın hacimsel içerikleri, tepe gazlarının örneklenmesiyle belirlenmiş ve gaz kromatografisi
(GC) kullanılarak analiz edilmiştir.
Sonuçlara göre, R1 ve R2 reaktörleri maksimum hacimsel biyohidrojen yüzdesi olarak % 10-15 üretirken, R3
ve R4 reaktörleri sırasıyla %30 (11.günde) ve %32 (7.günde) seviyelerine ulaşmıştır. Bu sonuçlar,
asidifikasyon ön işleminin hidrojen verimini artırmadığını; ancak, nötr koşullar altında nanopartikül
eklenmesinin (kontrol grubuna kıyasla) biyohidrojen üretimini erken aşamalarda başlattığını göstermektedir.

References

  • [2] Feng, S., Ngo, H. H., Guo, W., Chang, S. W., Nguyen, D. D., Bui, X. T., ... & Hoang, B. N. (2023). Biohydrogen production, storage, and delivery: A comprehensive overview of current strategies and limitations. Chemical Engineering Journal, 144669.
  • [3] Genç, N. (2009). Biyolojik hidrojen üretim prosesleri. Balıkesir Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 11(2), 17-36.
  • [4] DURSUN, N., & GÜLŞEN, H. (2019). Biyohidrojen üretim yöntemleri ve biyohidrojen üretiminde biyoreaktörlerin kullanımı. Journal of the Institute of Science and Technology, 9(1), 66-75.
  • [5] Singh, A., Sevda, S., Abu Reesh, I. M., Vanbroekhoven, K., Rathore, D., & Pant, D. (2015). Biohydrogen production from lignocellulosic biomass: technology and sustainability. Energies, 8(11), 13062-13080.
  • [6] Srivastava, N., Srivastava, M., Mishra, P. K., Kausar, M. A., Saeed, M., Gupta, V. K., ... & Ramteke, P. W. (2020). Advances in nanomaterials induced biohydrogen production using waste biomass. Bioresource technology, 307, 123094.
  • [7] Alvarado-Cuevas, Z. D., Acevedo, L. G. O., Salas, J. T. O., & De León-Rodríguez, A. (2013). Nitrogen sources impact hydrogen production by Escherichia coli using cheese whey as substrate. New biotechnology, 30(6), 585-590.
  • [8] Bičáková, O., & Straka, P. (2012). Production of hydrogen from renewable resources and its effectiveness. International journal of hydrogen energy, 37(16), 11563-11578.
  • [10] Argun, H., & Kargi, F. (2011). Bio-hydrogen production by different operational modes of dark and photo-fermentation: an overview. International Journal of Hydrogen Energy, 36(13), 7443-7459.
  • [11] Rahman, S. N. A., Masdar, M. S., Rosli, M. I., Majlan, E. H., Husaini, T., Kamarudin, S. K., & Daud, W. R. W. (2016). Overview biohydrogen technologies and application in fuel cell technology. Renewable and sustainable energy reviews, 66, 137-162
  • [12] Srivastava, N., Srivastava, M., Malhotra, B. D., Gupta, V. K., Ramteke, P. W., Silva, R. N., ... & Mishra, P. K. (2019). Nanoengineered cellulosic biohydrogen production via dark fermentation: a novel approach. Biotechnology advances, 37(6), 107384.
  • [13] MUTLUBAŞ, H., & ÖZDEMİR, Z. Ö. (2019). Hydrogen as an energy carrier and hydrogen production methods. Bartın University International Journal of Natural and Applied Sciences, 2(1), 16-34.
  • [14] Kothari, R., Singh, D. P., Tyagi, V. V., & Tyagi, S. K. (2012). Fermentative hydrogen production–An alternative clean energy source. Renewable and Sustainable Energy Reviews, 16(4), 2337-2346.
  • [15] Yavuz, İ., & Yılmaz, E. Ş. (2021). Biyolojik Sistemli Nanopartiküller. Gazi Üniversitesi Fen Fakültesi Dergisi, 2(1), 93-108.
  • [16] Mullai, P., Yogeswari, M. K., & Sridevi, K. J. B. T. (2013). Optimisation and enhancement of biohydrogen production using nickel nanoparticles–A novel approach. Bioresource technology, 141, 212-219.
  • [17] Lin, R., Cheng, J., Ding, L., Song, W., Liu, M., Zhou, J., & Cen, K. (2016). Enhanced dark hydrogen fermentation by addition of ferric oxide nanoparticles using Enterobacter aerogenes. Bioresource technology, 207, 213-219.
  • [18] Porwal, S., Kumar, T., Lal, S., Rani, A., Kumar, S., Cheema, S., ... & Kalia, V. C. (2008). Hydrogen and polyhydroxybutyrate producing abilities of microbes from diverse habitats by dark fermentative process. Bioresource technology, 99(13), 5444-5451.
  • [19] Han, H., Cui, M., Wei, L., Yang, H., & Shen, J. (2011). Enhancement effect of hematite nanoparticles on fermentative hydrogen production. Bioresource technology, 102(17), 7903- 7909.
  • [20] Mohanraj, S., Kodhaiyolii, S., Rengasamy, M., & Pugalenthi, V. (2014). Phytosynthesized iron oxide nanoparticles and ferrous iron on fermentative hydrogen production using Enterobacter cloacae: evaluation and comparison of the effects. International journal of hydrogen energy, 39(23), 11920-11929.
  • [21] Kumar, G., Mathimani, T., Rene, E. R., & Pugazhendhi, A. (2019). Application of nanotechnology in dark fermentation for enhanced biohydrogen production using inorganic nanoparticles. International Journal of Hydrogen Energy, 44(26), 13106-13113.
  • [22] Gadhe, A., Sonawane, S. S., & Varma, M. N. (2015). Enhancement effect of hematite and nickel nanoparticles on biohydrogen production from dairy wastewater. International Journal of Hydrogen Energy, 40(13), 4502-4511.
  • [24] Jiang, X., Hu, J., Lieber, A. M., Jackan, C. S., Biffinger, J. C., Fitzgerald, L. A., ... & Lieber, C. M. (2014). Nanoparticle facilitated extracellular electron transfer in microbial fuel cells. Nano letters, 14(11), 6737-6742.
  • [25] Shanmugam, S., Hari, A., Pandey, A., Mathimani, T., Felix, L., & Pugazhendhi, A. (2020). Comprehensive review on the application of inorganic and organic nanoparticles for enhancing biohydrogen production. Fuel, 270, 117453
  • [28] Han, H., Cui, M., Wei, L., Yang, H., & Shen, J. (2011) Enhancement effect of hematite nanoparticles on fermentative hydrogen production. Bioresource Technology. 102(17): 7903-
  • [30] Masihi, F., Rezaeitavabe, F., Karimi-Jashni, A., & Riefler, G. (2024). Optimization and enhancement of biohydrogen production in a single-stage hybrid (dark/photo) fermentation reactor using Fe3O4 and TiO2 nanoparticles. International Journal of Hydrogen Energy, 52, 295-305.
  • [31] Zhao, W., Zhao, J., Chen, G. D., Feng, R., Yang, J., Zhao, Y. F., & Zhang, Y. F. (2011). Anaerobic biohydrogen production by the mixed culture with mesoporous Fe3O4 nanoparticles activation. Advanced materials research, 306, 1528-1531.

Effect of Nanoparticle Addition on Biohydrogen Production

Year 2024, , 116 - 128, 31.12.2024
https://doi.org/10.18185/erzifbed.1523588

Abstract

Rapid population growth and consumption lead to an increased demand for energy. Fossil fuels as the most
dominant resources used for energy production are depleting, and more importantly, their combustion leads to
the release of carbon dioxide (CO 2 ), triggering global warming and climate change. Therefore, recent studies
have been focusing intensively on increasing the production of green hydrogen as a clean alternative [1-
2].Parallel to these efforts, bio-hydrogen has also been gaining significant attention.
In this study, high temperature (110°C for 10 minutes), acidic conditions (pH 2-5.5), and nanoparticle
addition (magnetite nanoparticle; obtained from Ege University, Faculty of Science, Department of
Biochemistry) methods were tested for enhancing the biohydrogen production. For this purpose, initially, the
sludge was autoclaved at 110°C for 10 minutes. Following these pretreatment steps, four different trial sets
(R1: pH 5.5, R2: pH 5.5 + 5mg/L Fe 3 O 4 NP, R3: pH 7, R4: pH 7 + 5mg/L Fe 3 O 4 NP) were established to
investigate biohydrogen production. The reactors were operated under static conditions at 38°C with fed-
batch using 2-4 g COD/day substrate load. The volumetric contents of the produced biogas were determined
by sampling of headspace gases and analyzed using gas chromatography (GC).
According to the results, while reactors R1 and R2 produced a maximum volumetric percentage of
biohydrogen of 10-15%, reactors R3 and R4 reached levels of 30% (on day 11) and 32% (on day 7),
respectively. These results indicated that the acidification pretreatment did not increase hydrogen yield;
however, the addition of nanoparticles under neutral conditions significantly improved biohydrogen
production (compared to the control group) at earlier stages.

References

  • [2] Feng, S., Ngo, H. H., Guo, W., Chang, S. W., Nguyen, D. D., Bui, X. T., ... & Hoang, B. N. (2023). Biohydrogen production, storage, and delivery: A comprehensive overview of current strategies and limitations. Chemical Engineering Journal, 144669.
  • [3] Genç, N. (2009). Biyolojik hidrojen üretim prosesleri. Balıkesir Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 11(2), 17-36.
  • [4] DURSUN, N., & GÜLŞEN, H. (2019). Biyohidrojen üretim yöntemleri ve biyohidrojen üretiminde biyoreaktörlerin kullanımı. Journal of the Institute of Science and Technology, 9(1), 66-75.
  • [5] Singh, A., Sevda, S., Abu Reesh, I. M., Vanbroekhoven, K., Rathore, D., & Pant, D. (2015). Biohydrogen production from lignocellulosic biomass: technology and sustainability. Energies, 8(11), 13062-13080.
  • [6] Srivastava, N., Srivastava, M., Mishra, P. K., Kausar, M. A., Saeed, M., Gupta, V. K., ... & Ramteke, P. W. (2020). Advances in nanomaterials induced biohydrogen production using waste biomass. Bioresource technology, 307, 123094.
  • [7] Alvarado-Cuevas, Z. D., Acevedo, L. G. O., Salas, J. T. O., & De León-Rodríguez, A. (2013). Nitrogen sources impact hydrogen production by Escherichia coli using cheese whey as substrate. New biotechnology, 30(6), 585-590.
  • [8] Bičáková, O., & Straka, P. (2012). Production of hydrogen from renewable resources and its effectiveness. International journal of hydrogen energy, 37(16), 11563-11578.
  • [10] Argun, H., & Kargi, F. (2011). Bio-hydrogen production by different operational modes of dark and photo-fermentation: an overview. International Journal of Hydrogen Energy, 36(13), 7443-7459.
  • [11] Rahman, S. N. A., Masdar, M. S., Rosli, M. I., Majlan, E. H., Husaini, T., Kamarudin, S. K., & Daud, W. R. W. (2016). Overview biohydrogen technologies and application in fuel cell technology. Renewable and sustainable energy reviews, 66, 137-162
  • [12] Srivastava, N., Srivastava, M., Malhotra, B. D., Gupta, V. K., Ramteke, P. W., Silva, R. N., ... & Mishra, P. K. (2019). Nanoengineered cellulosic biohydrogen production via dark fermentation: a novel approach. Biotechnology advances, 37(6), 107384.
  • [13] MUTLUBAŞ, H., & ÖZDEMİR, Z. Ö. (2019). Hydrogen as an energy carrier and hydrogen production methods. Bartın University International Journal of Natural and Applied Sciences, 2(1), 16-34.
  • [14] Kothari, R., Singh, D. P., Tyagi, V. V., & Tyagi, S. K. (2012). Fermentative hydrogen production–An alternative clean energy source. Renewable and Sustainable Energy Reviews, 16(4), 2337-2346.
  • [15] Yavuz, İ., & Yılmaz, E. Ş. (2021). Biyolojik Sistemli Nanopartiküller. Gazi Üniversitesi Fen Fakültesi Dergisi, 2(1), 93-108.
  • [16] Mullai, P., Yogeswari, M. K., & Sridevi, K. J. B. T. (2013). Optimisation and enhancement of biohydrogen production using nickel nanoparticles–A novel approach. Bioresource technology, 141, 212-219.
  • [17] Lin, R., Cheng, J., Ding, L., Song, W., Liu, M., Zhou, J., & Cen, K. (2016). Enhanced dark hydrogen fermentation by addition of ferric oxide nanoparticles using Enterobacter aerogenes. Bioresource technology, 207, 213-219.
  • [18] Porwal, S., Kumar, T., Lal, S., Rani, A., Kumar, S., Cheema, S., ... & Kalia, V. C. (2008). Hydrogen and polyhydroxybutyrate producing abilities of microbes from diverse habitats by dark fermentative process. Bioresource technology, 99(13), 5444-5451.
  • [19] Han, H., Cui, M., Wei, L., Yang, H., & Shen, J. (2011). Enhancement effect of hematite nanoparticles on fermentative hydrogen production. Bioresource technology, 102(17), 7903- 7909.
  • [20] Mohanraj, S., Kodhaiyolii, S., Rengasamy, M., & Pugalenthi, V. (2014). Phytosynthesized iron oxide nanoparticles and ferrous iron on fermentative hydrogen production using Enterobacter cloacae: evaluation and comparison of the effects. International journal of hydrogen energy, 39(23), 11920-11929.
  • [21] Kumar, G., Mathimani, T., Rene, E. R., & Pugazhendhi, A. (2019). Application of nanotechnology in dark fermentation for enhanced biohydrogen production using inorganic nanoparticles. International Journal of Hydrogen Energy, 44(26), 13106-13113.
  • [22] Gadhe, A., Sonawane, S. S., & Varma, M. N. (2015). Enhancement effect of hematite and nickel nanoparticles on biohydrogen production from dairy wastewater. International Journal of Hydrogen Energy, 40(13), 4502-4511.
  • [24] Jiang, X., Hu, J., Lieber, A. M., Jackan, C. S., Biffinger, J. C., Fitzgerald, L. A., ... & Lieber, C. M. (2014). Nanoparticle facilitated extracellular electron transfer in microbial fuel cells. Nano letters, 14(11), 6737-6742.
  • [25] Shanmugam, S., Hari, A., Pandey, A., Mathimani, T., Felix, L., & Pugazhendhi, A. (2020). Comprehensive review on the application of inorganic and organic nanoparticles for enhancing biohydrogen production. Fuel, 270, 117453
  • [28] Han, H., Cui, M., Wei, L., Yang, H., & Shen, J. (2011) Enhancement effect of hematite nanoparticles on fermentative hydrogen production. Bioresource Technology. 102(17): 7903-
  • [30] Masihi, F., Rezaeitavabe, F., Karimi-Jashni, A., & Riefler, G. (2024). Optimization and enhancement of biohydrogen production in a single-stage hybrid (dark/photo) fermentation reactor using Fe3O4 and TiO2 nanoparticles. International Journal of Hydrogen Energy, 52, 295-305.
  • [31] Zhao, W., Zhao, J., Chen, G. D., Feng, R., Yang, J., Zhao, Y. F., & Zhang, Y. F. (2011). Anaerobic biohydrogen production by the mixed culture with mesoporous Fe3O4 nanoparticles activation. Advanced materials research, 306, 1528-1531.
There are 25 citations in total.

Details

Primary Language English
Subjects Pharmaceutical Sciences
Journal Section Makaleler
Authors

Burçin Karabey 0000-0003-4834-6740

Candan Uçarkuş 0009-0003-1216-3667

Güven Özdemir 0000-0002-7577-4233

Nuri Azbar 0000-0003-4463-0197

Publication Date December 31, 2024
Submission Date July 28, 2024
Acceptance Date December 29, 2024
Published in Issue Year 2024

Cite

APA Karabey, B., Uçarkuş, C., Özdemir, G., Azbar, N. (2024). Effect of Nanoparticle Addition on Biohydrogen Production. Erzincan University Journal of Science and Technology(SUIC), 116-128. https://doi.org/10.18185/erzifbed.1523588