Review
BibTex RIS Cite
Year 2024, , 143 - 159, 31.12.2024
https://doi.org/10.18185/erzifbed.1525074

Abstract

References

  • [1] Deehan,Meganetal.(2024).2023NOAAScienceReport.https://doi.org/10.25923/x0x7- f622
  • [2] Dissanayake, P. D., You, S., Igalavithana, A. D., Xia, Y., Bhatnagar, A., Gupta, S., Kua, H. W., et al. (2020). Biochar-based adsorbents for carbon dioxide capture: A critical review. Renewable and Sustainable Energy Reviews, 119, 109582. Retrieved November 4, 2020, from https://doi.org/10.1016/j.rser.2019.109582
  • [3] Zhang, C., Sun, S., Xu, S., & Wu, C. (2022). CO2 capture over steam and KOH activated biochar: Effect of relative humidity. Biomass and Bioenergy, 166, 106608.
  • [4] Ok,Y.S.,Tsang,D.C.W.,Bolan,N.,&Novak,J.M.(2018).Biocharfrombiomassand waste: Fundamentals and applications. Elsevier. https://doi.org/10.1016/C2016-0-01974-5
  • [5] Kaya,N.,CarusÖzkeser,E.,&YıldızUzun,Z.(2023).Investigatingtheeffectivenessof rice husk-derived low-cost activated carbon in removing environmental pollutants: a study of its characterization. International Journal of Phytoremediation, 26(3), 427–447. https://doi.org/10.1080/15226514.2023.2246584
  • [6] Rahamathullah,R.,Zakaria,DS,Rozi,SKM,Halim,HNA,Razak,FIA,Sapari,S.(2024). An integrated DFT calculation and adsorption study of desiccated coconut waste-based biochar in c environment. Biomass Conversion And Biorefinery (Early access). DOI: 10.1007/s13399-024-05343-5
  • [7] Arjona-Jaime, P., Isaacs-Páez, E.D., Nieto-Delgado, C., Chazaro-Ruiz, L.F., Rangel- Mendez, R. (2024) Insight into the effect of pressure on the CO2 capture capacity and kinetics by a biochar-ionic liquid composite. Journal of Environmental Chemical Engineering 12, 111804 DOI: 10.1016/j.jece.2023.111804
  • [8] Sun, XG, Du, Z , Wang, YM , Guan, YP , Zhu, BN , Huang, YQ. (2024) Management of waste crustacean shells for the construction of a carbon-negative circulation model. Sustainable Energy & Fuels 8 (4). DOI10.1039/d3se01218b
  • [9] Li,HX.,Tang,MH,Wang,L,Liu,Q,Yao,F,Gong,ZY,Li,YC,Lu,SY,Yan,JH, (2024) Molecular simulation combined with DFT calculation guided heteroatom-doped biochar rational design for highly selective and efficient CO2 capture. Chemical Engineering Journal 481, DOI10.1016/j.cej.2023.148362
  • [10]Cai, YY, Aihemaiti, A , Su, YP , Sun, YQ, Sun, X , Li, H, Chen, KZ , Shen, XH , Yan, F , Qu, F , Chen, HJ , Zhang, ZT. (2024) CO2 assisted Ca-based additives on pyrolytic characteristics and products from the co-pyrolysis of sewage sludge and biomass. Separation And Purification Technology 330 (B) DOI: 10.1016/j.seppur.2023.125470 [11]Guo, TX , Zhang, YH , Geng, YH , Chen, JH , Zhu, ZH , Bedane, AH , Du, YR (2023) Surface oxidation modification of nitrogen doping biochar for enhancing CO2 adsorption. Industrial Crops And Products 206. DOI10.1016/j.indcrop.2023.117582
  • [12] Nagarajan, L., Kumaraguru, K., Saravanan, P., Rajeshkannan, R., Rajasimman, M. (2021). Facile synthesis and characterization of microporous-structured activated carbon from agro waste materials and its application for CO2 capture. Environmental Technology, 43(25), 3983–3992. https://doi.org/10.1080/09593330.2021.1938243
  • [13] Guo, S., Li, Y., Wang, Y., Wang, L., Sun, Y., & Liu, L. (2022). Recent advances in biochar- based adsorbents for CO2 capture. Carbon Capture Science & Technology, 4, 100059.
  • [14]Guler, A. T., Waaijer, C. J. F., & Palmblad, M. (2016a). Scientific workflows for bibliometrics. Scientometrics, 107(2), 385–398. DOI: 10.1007/s11192-016-1885-6
  • [15] Sun, Y., Jiang, F., Li, R., & Li, X. (2023). The future landscape of immunology in COPD: A bibliometric analysis. Respiratory Medicine, 107462–107462. Elsevier BV.
  • [16]Laude, A. (2019) Bioenergy with carbon capture and storage: are short-term issues set aside? Mitigation and Adaptation Strategies for Global Change 2019 25:2. DOI:10.1007/s11027-019-09856-7
  • [17]Ritchie, S. Tsalaporta, E. (2022) Trends in carbon capture technologies: a bibliometric analysis. Carbon Neutrality 1:1 DOI:10.1007/s43979-022-00040-6
  • [18]Naseer, MN , Zaidi, AA , Dutta, K , Wahab, YA , Jaafar, J , Nusrat, R , Ullah, I , Kim, B (2022) Past, present and future of materials' applications for CO2 capture: A bibliometric analysis. Energy Reports 8, 4252-4264 DOI: 10.1016/j.egyr.2022.02.301
  • [19]Ji, C., Zhu, S., Zhang, ES., Li, WJ., Liu, YY., Zhang, WL., Su, CJ., Gu, ZJ., Zhang, H. (2022). Research progress and applications of silica-based aerogels – a bibliometric analysis. RSC Advances 12, 14137
  • [20]Sen, R., Mukherjee, S. (2024). Recent advances in microalgal carbon capture and utilization (bio-CCU) process vis-à-vis conventional carbon capture and storage (CCS) technologies. Critical Reviews in Environmental Science and Technology, 1–26. https://doi.org/10.1080/10643389.2024.2361938
  • [21]Miranda, A.M., Hernandez-Tenorio, F., Ocampo, D., Vargas, G.J., Sáez, A.A., (2022) Trends on CO2 Capture with Microalgae: A Bibliometric Analysis. Molecules 27, 4669. https://doi.org/10.3390/molecules27154669
  • [22] Mongeon, P., & Paul-Hus, A. (2016). The Journal Coverage of Web of Science and Scopus: a Comparative Analysis. Scientometrics, 106(1), 213–228. [23]Kumpulainen, M., & Seppänen, M. (2022). Combining Web of Science and Scopus datasets in citation-based literature study. Scientometrics, 127(10), 5613–5631.
  • [24] Bagdi, T., Ghosh, S., Sarkar, A., Hazra, A. K., Balachandran, S., & Chaudhury, S. (2023). Evaluation of research progress and trends on gender and renewable energy: A bibliometric analysis. Journal of Cleaner Production, 423, 138654. Retrieved October 3, from https://doi.org/10.1016/j.jclepro.2023.138654
  • [25]José Manuel Veiga-del-Baño, Cámara, M. A., Oliva, J., Antonio Tomás Hernández- Cegarra, Andreo-Martínez, P., & Motas, M. (2023). Mapping of emerging contaminants in coastal waters research: A bibliometric analysis of research output during 1986–2022. Marine Pollution Bulletin, 194, 115366–115366. Elsevier BV.
  • [26]Onchonga, D., & Mohamed, E. A. (2023). Integrating social determinants of health in medical education: a bibliometric analysis study. Public Health, 224, 203–208. Elsevier BV.
  • [27]Wang, H., Liu, F., Ma, H., Yin, H., Wang, P., Bai, B., Guo, L., et al. (2021). Associations between depression, nutrition, and outcomes among individuals with coronary artery disease. Nutrition, 86, 111157.
  • [28]Kinya Sakanishi, Obata, H., Isao Mochida, & Tsuyoshi Sakaki. (1995). Removal and Recovery of Quinoline Bases from Methylnaphthalene Oil in a Semicontinuous Supercritical CO2 Separation Apparatus with a Fixed Bed of Supported Aluminum Sulfate. Industrial & Engineering Chemistry Research, 34(11), 4118–4121. American Chemical Society.
  • [29]Riemer, P. W. F., & Ormerod, W. G. (1995). International perspectives and the results of carbon dioxide capture disposal and utilisation studies. Energy Conversion and Management, 36(6-9), 813–818.
  • [30]Plaza, M. G., Pevida, C., Arias, B., Fermoso, J., Casal, M. D., Martín, C. F., Rubiera, F., et al. (2009). Development of low-cost biomass-based adsorbents for post-combustion CO2 capture. Fuel, 88(12), 2442–2447.
  • [31]Plaza, M. G., Pevida, C., Arias, B., Fermoso, J., Rubiera, F., & Pis, J. J. (2009). A comparison of two methods for producing CO2 capture adsorbents. Energy Procedia, 1(1), 1107–1113.
  • [32]Gil, M. V., Álvarez-Gutiérrez, N., Martínez, M., Rubiera, F., Pevida, C., & Morán, A. (2015). Carbon adsorbents for CO2 capture from bio-hydrogen and biogas streams: Breakthrough adsorption study. Chemical Engineering Journal, 269, 148–158.
  • [33]Lan, P., & Wu, S. (2014). Synthesis of a Porous Nano-CaO/MgO-Based CO2 Adsorbent. Chemical Engineering & Technology, 37(4), 580–586. [34]Wiley-Blackwell.Martavaltzi, C. S., & Lemonidou, A. A. (2008). Development of new CaO based sorbent materials for CO2 removal at high temperature. Microporous and Mesoporous Materials, 110(1), 119–127. Elsevier BV.
  • [35]Li, S., Yuan, X., Deng, S., Zhao, L., & Lee, K. B. (2021). A review on biomass-derived CO2 adsorption capture: Adsorbent, adsorber, adsorption, and advice. Renewable and Sustainable Energy Reviews, 152, 111708.
  • [36]Paul, S., Bera, S., Dasgupta, R., Mondal, S., & Roy, S. (2021). Review on the recent structural advances in open and closed systems for carbon capture through algae. Energy Nexus, 4, 100032
  • [37]Qiao, Y., & Wu, C. (2022). Nitrogen enriched biochar used as CO2 adsorbents: a brief review. Carbon Capture Science & Technology, 2, 100018.
  • [38] Chakraborty, S., Saha, R., & Saha, S. (2023). A critical review on graphene and graphene- based derivatives from natural sources emphasizing on CO2 adsorption potential. Environmental science and pollution research international. Springer Science Business Media.
  • [39]Song, S., Li, Z., Liu, G., Cui, X., & Sun, J. (2023). Application of biochar cement-based materials for carbon sequestration. Construction and Building Materials, 405, 133373– 133373. Elsevier BV.
  • [40]Yan, J., Tan, Y., Tong, S., Zhu, J., & Wang, Z. (2024). Synthesis of triphenylamine-based nanoporous organic polymers for highly efficient capture of SO2 and CO2. Polymer Chemistry, 15(6), 500–507. Royal Society of Chemistry.
  • [41]Pimentel, CH, Díaz-Fernández, L., Gómez-Díaz, D., Freire, MS., González-Alvares, J. (2023) Separation of CO2 using biochar and KOH and ZnCl2 activated carbons derived from pine sawdust. Journal of Environmental Chemical Engineering 11(6) 111378 DOI: 10.1016/j.jece.2023.111378

Biomass-Derived Adsorbents for CO2 Capture: Trends and Bibliometric Insights

Year 2024, , 143 - 159, 31.12.2024
https://doi.org/10.18185/erzifbed.1525074

Abstract

Increased fossil fuel usage and deforestation disrupt CO2 balance, exacerbating climate change. A multifaceted approach should be implemented to mitigate the effects of climate change, including sustainable resource management and increased utilization of alternative energy sources. In this process, CO2 capture has emerged as a promising method, with adsorbents playing a critical role. Currently, biomass-based adsorbents, especially those derived from organic bio-waste, are materials of significant interest in the field of CO2 capture due to their unique properties and environmental advantages. This study presents a comprehensive bibliometric analysis of research conducted on adsorbents with high CO2 capture capacities derived from biomass or organic waste sources, aiming to identify trends in this field and evaluate methodologies. Since 1995, over 1500 scientific publications were collected based on selected keywords and manually screened for relevance. In the bibliometric analysis, key data such as authors, affiliated institutions, countries, and research areas were presented, and datasets were compiled for performance analysis and scientific mapping. Web of Science (WoS), one of the most commonly used multidisciplinary databases today, was utilized for data collection and analysis, and VOSviewer software was employed for mapping. In conclusion, this study maps the landscape of the relevant field by identifying significant contributors, relevant keywords, field categories, and research approaches, serving as a strategic tool for researchers to recognize progress, trends, and gaps to guide future studies.

Ethical Statement

There are no ethical issues regarding the publication of this study.

Supporting Institution

there is no financial support.

Thanks

This article was conducted as part of a master's thesis and received no financial support.

References

  • [1] Deehan,Meganetal.(2024).2023NOAAScienceReport.https://doi.org/10.25923/x0x7- f622
  • [2] Dissanayake, P. D., You, S., Igalavithana, A. D., Xia, Y., Bhatnagar, A., Gupta, S., Kua, H. W., et al. (2020). Biochar-based adsorbents for carbon dioxide capture: A critical review. Renewable and Sustainable Energy Reviews, 119, 109582. Retrieved November 4, 2020, from https://doi.org/10.1016/j.rser.2019.109582
  • [3] Zhang, C., Sun, S., Xu, S., & Wu, C. (2022). CO2 capture over steam and KOH activated biochar: Effect of relative humidity. Biomass and Bioenergy, 166, 106608.
  • [4] Ok,Y.S.,Tsang,D.C.W.,Bolan,N.,&Novak,J.M.(2018).Biocharfrombiomassand waste: Fundamentals and applications. Elsevier. https://doi.org/10.1016/C2016-0-01974-5
  • [5] Kaya,N.,CarusÖzkeser,E.,&YıldızUzun,Z.(2023).Investigatingtheeffectivenessof rice husk-derived low-cost activated carbon in removing environmental pollutants: a study of its characterization. International Journal of Phytoremediation, 26(3), 427–447. https://doi.org/10.1080/15226514.2023.2246584
  • [6] Rahamathullah,R.,Zakaria,DS,Rozi,SKM,Halim,HNA,Razak,FIA,Sapari,S.(2024). An integrated DFT calculation and adsorption study of desiccated coconut waste-based biochar in c environment. Biomass Conversion And Biorefinery (Early access). DOI: 10.1007/s13399-024-05343-5
  • [7] Arjona-Jaime, P., Isaacs-Páez, E.D., Nieto-Delgado, C., Chazaro-Ruiz, L.F., Rangel- Mendez, R. (2024) Insight into the effect of pressure on the CO2 capture capacity and kinetics by a biochar-ionic liquid composite. Journal of Environmental Chemical Engineering 12, 111804 DOI: 10.1016/j.jece.2023.111804
  • [8] Sun, XG, Du, Z , Wang, YM , Guan, YP , Zhu, BN , Huang, YQ. (2024) Management of waste crustacean shells for the construction of a carbon-negative circulation model. Sustainable Energy & Fuels 8 (4). DOI10.1039/d3se01218b
  • [9] Li,HX.,Tang,MH,Wang,L,Liu,Q,Yao,F,Gong,ZY,Li,YC,Lu,SY,Yan,JH, (2024) Molecular simulation combined with DFT calculation guided heteroatom-doped biochar rational design for highly selective and efficient CO2 capture. Chemical Engineering Journal 481, DOI10.1016/j.cej.2023.148362
  • [10]Cai, YY, Aihemaiti, A , Su, YP , Sun, YQ, Sun, X , Li, H, Chen, KZ , Shen, XH , Yan, F , Qu, F , Chen, HJ , Zhang, ZT. (2024) CO2 assisted Ca-based additives on pyrolytic characteristics and products from the co-pyrolysis of sewage sludge and biomass. Separation And Purification Technology 330 (B) DOI: 10.1016/j.seppur.2023.125470 [11]Guo, TX , Zhang, YH , Geng, YH , Chen, JH , Zhu, ZH , Bedane, AH , Du, YR (2023) Surface oxidation modification of nitrogen doping biochar for enhancing CO2 adsorption. Industrial Crops And Products 206. DOI10.1016/j.indcrop.2023.117582
  • [12] Nagarajan, L., Kumaraguru, K., Saravanan, P., Rajeshkannan, R., Rajasimman, M. (2021). Facile synthesis and characterization of microporous-structured activated carbon from agro waste materials and its application for CO2 capture. Environmental Technology, 43(25), 3983–3992. https://doi.org/10.1080/09593330.2021.1938243
  • [13] Guo, S., Li, Y., Wang, Y., Wang, L., Sun, Y., & Liu, L. (2022). Recent advances in biochar- based adsorbents for CO2 capture. Carbon Capture Science & Technology, 4, 100059.
  • [14]Guler, A. T., Waaijer, C. J. F., & Palmblad, M. (2016a). Scientific workflows for bibliometrics. Scientometrics, 107(2), 385–398. DOI: 10.1007/s11192-016-1885-6
  • [15] Sun, Y., Jiang, F., Li, R., & Li, X. (2023). The future landscape of immunology in COPD: A bibliometric analysis. Respiratory Medicine, 107462–107462. Elsevier BV.
  • [16]Laude, A. (2019) Bioenergy with carbon capture and storage: are short-term issues set aside? Mitigation and Adaptation Strategies for Global Change 2019 25:2. DOI:10.1007/s11027-019-09856-7
  • [17]Ritchie, S. Tsalaporta, E. (2022) Trends in carbon capture technologies: a bibliometric analysis. Carbon Neutrality 1:1 DOI:10.1007/s43979-022-00040-6
  • [18]Naseer, MN , Zaidi, AA , Dutta, K , Wahab, YA , Jaafar, J , Nusrat, R , Ullah, I , Kim, B (2022) Past, present and future of materials' applications for CO2 capture: A bibliometric analysis. Energy Reports 8, 4252-4264 DOI: 10.1016/j.egyr.2022.02.301
  • [19]Ji, C., Zhu, S., Zhang, ES., Li, WJ., Liu, YY., Zhang, WL., Su, CJ., Gu, ZJ., Zhang, H. (2022). Research progress and applications of silica-based aerogels – a bibliometric analysis. RSC Advances 12, 14137
  • [20]Sen, R., Mukherjee, S. (2024). Recent advances in microalgal carbon capture and utilization (bio-CCU) process vis-à-vis conventional carbon capture and storage (CCS) technologies. Critical Reviews in Environmental Science and Technology, 1–26. https://doi.org/10.1080/10643389.2024.2361938
  • [21]Miranda, A.M., Hernandez-Tenorio, F., Ocampo, D., Vargas, G.J., Sáez, A.A., (2022) Trends on CO2 Capture with Microalgae: A Bibliometric Analysis. Molecules 27, 4669. https://doi.org/10.3390/molecules27154669
  • [22] Mongeon, P., & Paul-Hus, A. (2016). The Journal Coverage of Web of Science and Scopus: a Comparative Analysis. Scientometrics, 106(1), 213–228. [23]Kumpulainen, M., & Seppänen, M. (2022). Combining Web of Science and Scopus datasets in citation-based literature study. Scientometrics, 127(10), 5613–5631.
  • [24] Bagdi, T., Ghosh, S., Sarkar, A., Hazra, A. K., Balachandran, S., & Chaudhury, S. (2023). Evaluation of research progress and trends on gender and renewable energy: A bibliometric analysis. Journal of Cleaner Production, 423, 138654. Retrieved October 3, from https://doi.org/10.1016/j.jclepro.2023.138654
  • [25]José Manuel Veiga-del-Baño, Cámara, M. A., Oliva, J., Antonio Tomás Hernández- Cegarra, Andreo-Martínez, P., & Motas, M. (2023). Mapping of emerging contaminants in coastal waters research: A bibliometric analysis of research output during 1986–2022. Marine Pollution Bulletin, 194, 115366–115366. Elsevier BV.
  • [26]Onchonga, D., & Mohamed, E. A. (2023). Integrating social determinants of health in medical education: a bibliometric analysis study. Public Health, 224, 203–208. Elsevier BV.
  • [27]Wang, H., Liu, F., Ma, H., Yin, H., Wang, P., Bai, B., Guo, L., et al. (2021). Associations between depression, nutrition, and outcomes among individuals with coronary artery disease. Nutrition, 86, 111157.
  • [28]Kinya Sakanishi, Obata, H., Isao Mochida, & Tsuyoshi Sakaki. (1995). Removal and Recovery of Quinoline Bases from Methylnaphthalene Oil in a Semicontinuous Supercritical CO2 Separation Apparatus with a Fixed Bed of Supported Aluminum Sulfate. Industrial & Engineering Chemistry Research, 34(11), 4118–4121. American Chemical Society.
  • [29]Riemer, P. W. F., & Ormerod, W. G. (1995). International perspectives and the results of carbon dioxide capture disposal and utilisation studies. Energy Conversion and Management, 36(6-9), 813–818.
  • [30]Plaza, M. G., Pevida, C., Arias, B., Fermoso, J., Casal, M. D., Martín, C. F., Rubiera, F., et al. (2009). Development of low-cost biomass-based adsorbents for post-combustion CO2 capture. Fuel, 88(12), 2442–2447.
  • [31]Plaza, M. G., Pevida, C., Arias, B., Fermoso, J., Rubiera, F., & Pis, J. J. (2009). A comparison of two methods for producing CO2 capture adsorbents. Energy Procedia, 1(1), 1107–1113.
  • [32]Gil, M. V., Álvarez-Gutiérrez, N., Martínez, M., Rubiera, F., Pevida, C., & Morán, A. (2015). Carbon adsorbents for CO2 capture from bio-hydrogen and biogas streams: Breakthrough adsorption study. Chemical Engineering Journal, 269, 148–158.
  • [33]Lan, P., & Wu, S. (2014). Synthesis of a Porous Nano-CaO/MgO-Based CO2 Adsorbent. Chemical Engineering & Technology, 37(4), 580–586. [34]Wiley-Blackwell.Martavaltzi, C. S., & Lemonidou, A. A. (2008). Development of new CaO based sorbent materials for CO2 removal at high temperature. Microporous and Mesoporous Materials, 110(1), 119–127. Elsevier BV.
  • [35]Li, S., Yuan, X., Deng, S., Zhao, L., & Lee, K. B. (2021). A review on biomass-derived CO2 adsorption capture: Adsorbent, adsorber, adsorption, and advice. Renewable and Sustainable Energy Reviews, 152, 111708.
  • [36]Paul, S., Bera, S., Dasgupta, R., Mondal, S., & Roy, S. (2021). Review on the recent structural advances in open and closed systems for carbon capture through algae. Energy Nexus, 4, 100032
  • [37]Qiao, Y., & Wu, C. (2022). Nitrogen enriched biochar used as CO2 adsorbents: a brief review. Carbon Capture Science & Technology, 2, 100018.
  • [38] Chakraborty, S., Saha, R., & Saha, S. (2023). A critical review on graphene and graphene- based derivatives from natural sources emphasizing on CO2 adsorption potential. Environmental science and pollution research international. Springer Science Business Media.
  • [39]Song, S., Li, Z., Liu, G., Cui, X., & Sun, J. (2023). Application of biochar cement-based materials for carbon sequestration. Construction and Building Materials, 405, 133373– 133373. Elsevier BV.
  • [40]Yan, J., Tan, Y., Tong, S., Zhu, J., & Wang, Z. (2024). Synthesis of triphenylamine-based nanoporous organic polymers for highly efficient capture of SO2 and CO2. Polymer Chemistry, 15(6), 500–507. Royal Society of Chemistry.
  • [41]Pimentel, CH, Díaz-Fernández, L., Gómez-Díaz, D., Freire, MS., González-Alvares, J. (2023) Separation of CO2 using biochar and KOH and ZnCl2 activated carbons derived from pine sawdust. Journal of Environmental Chemical Engineering 11(6) 111378 DOI: 10.1016/j.jece.2023.111378
There are 38 citations in total.

Details

Primary Language English
Subjects Pharmaceutical Sciences
Journal Section Makaleler
Authors

Yagmur Olgun 0000-0001-5509-4153

Özben Kutlu 0000-0002-0361-6949

Publication Date December 31, 2024
Submission Date July 30, 2024
Acceptance Date December 29, 2024
Published in Issue Year 2024

Cite

APA Olgun, Y., & Kutlu, Ö. (2024). Biomass-Derived Adsorbents for CO2 Capture: Trends and Bibliometric Insights. Erzincan University Journal of Science and Technology(SUIC), 143-159. https://doi.org/10.18185/erzifbed.1525074