Research Article
BibTex RIS Cite
Year 2024, , 840 - 852, 31.12.2024
https://doi.org/10.18185/erzifbed.1572972

Abstract

References

  • [1] Zhou, K., Liu, J., Wen, P., Hu, Y., Gui, Z. (2014) A noncovalent functionalization approach to improve the dispersibility and properties of polymer/MoS2 composites. Applied Surface Science, 316 (1), 237-44.
  • [2] Zhang, S.L., Choi, H.H., Yue, H.Y., Yang, W.C. (2014) Controlled exfoliation of molybdenum disulfide for developing thin film humidity sensor. Current Applied Physics, 14 (3), 264-8.
  • [3] Tang, Q., Zhou, Z. (2013) Graphene-analogous low-dimensional materials. Progress in Materials Science, 58 (8), 1244-315.
  • [4] Huang, K.J., Wang, L., Liu, Y.J., Gan, T., Liu, Y.M., Wang, L.L., Fan, Y. (2013) Synthesis and electrochemical performances of Layered tungsten sulfide-graphene nanocomposite as a sensing platform for catechol, resorcinol and hydroquinone. Electrochimica Acta, 107, 379-87.
  • [5] Zhang, Y., Xu, R.X., Li, S., Zhu, C.G., Guo, Y.L., Sun, J., Li, J.J. (2015) Lipoprotein subfractions partly mediate the association between serum uric acid and coronary artery disease. Clinica Chimica Acta, 441, 109-114.
  • [6] Mayer, F.J., Mannhalter, C., Minar, E., Schillinger, M., Chavakis, T., Siegert, G., Arneth, B.M., Koppensteiner, R., Hoke, M. (2015) The impact of uric acid on long-term mortality in patients with asymptomatic carotid atherosclerotic disease. Journal of Stroke and Cerebrovascular Diseases, 24 (2), 354-61.
  • [7] Cai, W., Lai, T., Du, H., Ye, J. (2014) Electrochemical determination of ascorbic acid, dopamine and uric acid based on an exfoliated graphite paper electrode: A high performance flexible sensor. Sensors and Actuators B: Chemical, 193, 492-500.
  • [8] Kanďár, R., Drábková, P., Hampl, R. (2011) The determination of ascorbic acid and uric acid in human seminal plasma using an HPLC with UV detection. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 879 (26), 2834-9.
  • [9] Li, X., Franke, A.A. (2009) Fast HPLC-ECD analysis of ascorbic acid, dehydroascorbic acid and uric acid. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 877 (10), 853, 6.
  • [10] Marquardt, R.R. (1983) A Simple Spectrophotometric Method for the Direct Determination of Uric Acid in Avian Excreta. Poultry Science, 62 (10), 2106-8.
  • [11] Rocha, D.L., Rocha, F.R.P. (2010) A flow-based procedure with solenoid micro-pumps for the spectrophotometric determination of uric acid in urine. Microchemical Journal, 94 (1), 53-9.
  • [12] Lakshmi, D., Whitcombe, M.J., Davis, F., Sharma, P.S., Prasad, B.B. (2011) Electrochemical Detection of Uric Acid in Mixed and Clinical Samples: A Review. Electroanalysis, 23(2), 305-20.
  • [13] Aafria, S., Kumari, P., Sharma, S., Yadav, S., Batra, B., Rana, J.S., Sharma, M. (2022) Electrochemical biosensing of uric acid: A review. Microchemical Journal, 182, 107945.
  • [14] Sheng, Z.H., Zheng, X.Q., Xu, J.Y., Bao, W.J., Wang, F.B., Xia, X.H. (2012) Electrochemical sensor based on nitrogen doped graphene: Simultaneous determination of ascorbic acid, dopamine and uric acid. Biosensors and Bioelectronics, 34 (1), 125-31.
  • [15] Zhang, B., Huang, D., Xu, X., Alemu, G., Zhang, Y., Zhan, F., Shen, Y., Wang, M. (2013) Simultaneous electrochemical determination of ascorbic acid, dopamine and uric acid with helical carbon nanotubes. Electrochimica Acta, 91, 261-266.
  • [16] Tatlı, F., Calam, T.T., Uzun, D., Hasdemir, E. (2020) The determination of uric acid in the presence of ascorbic acid and dopamine using [(1H-1,2,4-triazole-3-ylimino) methyl]naphthalene-2-ol modified platinum electrode. Journal of the Faculty of Engineering and Architecture of Gazi University, 35 (4), 2013-2022.
  • [17] Asan, G. Çelikkan, H. (2017) Askorbik Asitin MoS2 Esaslı Elektrotla Elektrokimyasal Tayini. Gazi Üniversitesi Mühendislik-Mimarlık Fakültesi Dergisi, 32 (3), 617-625.
  • [18] Asan, G. (2015) MoS2 İle Modifiye Edilmiş Camsı Karbon Elektrot Kullanılarak Askorbik Asit, Dopamin Ve Ürik Asit’in Elektrokimyasal Yöntemlerle Tayini. Doktora Tezi, Gazi Üniversitesi.

DETERMINATION OF URIC ACID USING 2D-MoS2 MODIFIED GCE

Year 2024, , 840 - 852, 31.12.2024
https://doi.org/10.18185/erzifbed.1572972

Abstract

Abstract
Uric acid is the end product of purine metabolism in the human body. The determination of the amount of uric acid in biological samples is made by many analytical methods. However, due to the high cost and time consumption of these methods, many sensors have been developed for the determination of uric acid by electrochemical methods. Because the determination of biological samples by electrochemical methods is possible in shorter times and with inexpensive devices. In this study, electrochemical determination of uric acid was performed by modifying the glassy carbon electrode with two-dimensional molybdenum disulfide using two different methods (drop-coating and electrochemical coating). From the uric acid determination with the MoS2(1)/GCE numbered electrode, the sensitivity was found to be 11.4 µA.mM-1, the linear operating range from 4 µM to 520 µM, and the detection limit was 0.8 µM. With MoS2(2)/GCE, the 1st linear working range against UA was found to be 0.1 µM – 20 µM, the sensitivity was 331 µA.mM-1 and the detection limit was 6.7x10-8 M. The 2nd linear operating range was 20 µM - 687 µM, and the sensitivity was determined as 62.4 µA.mM-1. In order to determine the efficiency of uric acid determination with MoS2(2)/GCE, UA determination in blood serum samples obtained from the hospital was successfully performed with MoS2(2)/GCE with a relative error of 3.7%.

References

  • [1] Zhou, K., Liu, J., Wen, P., Hu, Y., Gui, Z. (2014) A noncovalent functionalization approach to improve the dispersibility and properties of polymer/MoS2 composites. Applied Surface Science, 316 (1), 237-44.
  • [2] Zhang, S.L., Choi, H.H., Yue, H.Y., Yang, W.C. (2014) Controlled exfoliation of molybdenum disulfide for developing thin film humidity sensor. Current Applied Physics, 14 (3), 264-8.
  • [3] Tang, Q., Zhou, Z. (2013) Graphene-analogous low-dimensional materials. Progress in Materials Science, 58 (8), 1244-315.
  • [4] Huang, K.J., Wang, L., Liu, Y.J., Gan, T., Liu, Y.M., Wang, L.L., Fan, Y. (2013) Synthesis and electrochemical performances of Layered tungsten sulfide-graphene nanocomposite as a sensing platform for catechol, resorcinol and hydroquinone. Electrochimica Acta, 107, 379-87.
  • [5] Zhang, Y., Xu, R.X., Li, S., Zhu, C.G., Guo, Y.L., Sun, J., Li, J.J. (2015) Lipoprotein subfractions partly mediate the association between serum uric acid and coronary artery disease. Clinica Chimica Acta, 441, 109-114.
  • [6] Mayer, F.J., Mannhalter, C., Minar, E., Schillinger, M., Chavakis, T., Siegert, G., Arneth, B.M., Koppensteiner, R., Hoke, M. (2015) The impact of uric acid on long-term mortality in patients with asymptomatic carotid atherosclerotic disease. Journal of Stroke and Cerebrovascular Diseases, 24 (2), 354-61.
  • [7] Cai, W., Lai, T., Du, H., Ye, J. (2014) Electrochemical determination of ascorbic acid, dopamine and uric acid based on an exfoliated graphite paper electrode: A high performance flexible sensor. Sensors and Actuators B: Chemical, 193, 492-500.
  • [8] Kanďár, R., Drábková, P., Hampl, R. (2011) The determination of ascorbic acid and uric acid in human seminal plasma using an HPLC with UV detection. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 879 (26), 2834-9.
  • [9] Li, X., Franke, A.A. (2009) Fast HPLC-ECD analysis of ascorbic acid, dehydroascorbic acid and uric acid. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 877 (10), 853, 6.
  • [10] Marquardt, R.R. (1983) A Simple Spectrophotometric Method for the Direct Determination of Uric Acid in Avian Excreta. Poultry Science, 62 (10), 2106-8.
  • [11] Rocha, D.L., Rocha, F.R.P. (2010) A flow-based procedure with solenoid micro-pumps for the spectrophotometric determination of uric acid in urine. Microchemical Journal, 94 (1), 53-9.
  • [12] Lakshmi, D., Whitcombe, M.J., Davis, F., Sharma, P.S., Prasad, B.B. (2011) Electrochemical Detection of Uric Acid in Mixed and Clinical Samples: A Review. Electroanalysis, 23(2), 305-20.
  • [13] Aafria, S., Kumari, P., Sharma, S., Yadav, S., Batra, B., Rana, J.S., Sharma, M. (2022) Electrochemical biosensing of uric acid: A review. Microchemical Journal, 182, 107945.
  • [14] Sheng, Z.H., Zheng, X.Q., Xu, J.Y., Bao, W.J., Wang, F.B., Xia, X.H. (2012) Electrochemical sensor based on nitrogen doped graphene: Simultaneous determination of ascorbic acid, dopamine and uric acid. Biosensors and Bioelectronics, 34 (1), 125-31.
  • [15] Zhang, B., Huang, D., Xu, X., Alemu, G., Zhang, Y., Zhan, F., Shen, Y., Wang, M. (2013) Simultaneous electrochemical determination of ascorbic acid, dopamine and uric acid with helical carbon nanotubes. Electrochimica Acta, 91, 261-266.
  • [16] Tatlı, F., Calam, T.T., Uzun, D., Hasdemir, E. (2020) The determination of uric acid in the presence of ascorbic acid and dopamine using [(1H-1,2,4-triazole-3-ylimino) methyl]naphthalene-2-ol modified platinum electrode. Journal of the Faculty of Engineering and Architecture of Gazi University, 35 (4), 2013-2022.
  • [17] Asan, G. Çelikkan, H. (2017) Askorbik Asitin MoS2 Esaslı Elektrotla Elektrokimyasal Tayini. Gazi Üniversitesi Mühendislik-Mimarlık Fakültesi Dergisi, 32 (3), 617-625.
  • [18] Asan, G. (2015) MoS2 İle Modifiye Edilmiş Camsı Karbon Elektrot Kullanılarak Askorbik Asit, Dopamin Ve Ürik Asit’in Elektrokimyasal Yöntemlerle Tayini. Doktora Tezi, Gazi Üniversitesi.
There are 18 citations in total.

Details

Primary Language English
Subjects Electroanalytical Chemistry
Journal Section Makaleler
Authors

Gülden Asan 0000-0002-6075-159X

Early Pub Date December 27, 2024
Publication Date December 31, 2024
Submission Date October 24, 2024
Acceptance Date December 23, 2024
Published in Issue Year 2024

Cite

APA Asan, G. (2024). DETERMINATION OF URIC ACID USING 2D-MoS2 MODIFIED GCE. Erzincan University Journal of Science and Technology, 17(3), 840-852. https://doi.org/10.18185/erzifbed.1572972