Research Article
BibTex RIS Cite

Year 2025, Volume: 18 Issue: 3, 713 - 725, 31.12.2025

Abstract

References

  • [1] Atanassov K.T., (1986) Intuitionistic fuzzy sets. Fuzzy Sets and Systems 20, 87–96.
  • [2] Bustince H., (2000) Indicator of inclusion grade for intervalvalued fuzzy sets. Application to approximate reasoning based on interval-valued fuzzy sets., International Journal of Approximate Reasoning, 23(3) 137-209.
  • [3] Bustince H., Barrenechea, E., Pagola, M., Fernandez, J., (2009) Interval-valued fuzzy sets constructed from matrices: Application to edge detection., Fuzzy Sets and Systems, 60(13), 1819-1840.
  • [4] Chen S., Wang H., (2009) Evaluating students answer scripts based on interval-valued fuzzy grade sheets., Expert Systems with Applications, 36(6), 9839-9846 (2009).
  • [5] Choi, B., Rhee, F., (2009) Interval type-2 fuzzy membership function generation methods for pattern recognition, Information Sciences, 179(13), 2102-2122.
  • [6] Concilio A.D., Guadagni C., Peters J.F., Ramanna S., (2018) Descriptive proximities. properties and interplay between classical proximities and overlap, Mat. Comput. Sci. 12: 91– 106.
  • [7] Efremoviĉ V.A., (1952) The geometry of proximity. Mat. Sb. N.S. 31(73), 189–200.
  • [8] Gorzalzany M.B., (1987) A method of inference inapproximate reasoning based on interval- valued fuzzy sets, Fuzzy Sets and Systems 21, 1-17.
  • [9] Grattan-Guiness I., (1975) Fuzzy membership mapped onto interval and many-valued quantities. Z. Math. Logik. Grundladen Math. 22, 149-160.
  • [10] Jahn K.U., (1975) Intervall-wertige Mengen, Math.Nach. 68, 115-132.
  • [11] Lodato M.W., (1964) On topologically induced generalized proximity relations I. Proc. Amer. Math. Soc. 15(3), 417–422.
  • [12] Lodato M.W., (1966) On topologically induced generalized proximity relations II. Pacific J. Math. 17(1), 131–135.
  • [13] Martinez, R., Castillo, O., Aguilar, L.T., (2009) Optimization of interval type-2 fuzzy logic controllers for a perturbed autonomous wheeled mobile robot usinggenetic algorithms., Information Sciences, 179(13), 2158- 2174.
  • [14] Naimpally S.A., Warrack B.D., (1970) Proximity Spaces. Cambridge Tract. 59, England.
  • [15] Öztürk M.A., İnan E., Tekin Ö., Peters J.F. (2019) Fuzzy proximal relator spaces. Neural Comput. Appl. 31(7), 3201–3210.
  • [16] Öztürk M.A., (2025) Intuitionistic fuzzy proximal relator spaces, Southeast Asian Bull. Math., (Accepted).
  • [17] Peters J.F. (2013) Local near sets: pattern discovery in proximity spaces, Mat. Comput. Sci. 7(1), 87–106.
  • [18] Peters J.F., Naimpally S.A., (2012) Applications of near sets. Notices of the Amer. Math. Soc. 59(4), 536–542.
  • [19] Peters J.F.,(2013) Near sets: an introduction. Math. Comput. Sci. 7(1), 3–9.
  • [20] Peters J.F., (2016) Proximal relator spaces. Filomat 30(2), 469–472.
  • [21] Peters J.F., (2016) Computational Proximity. Excursions in the Topology of Digital Images, Intelligent Systems Reference Library, Springer.
  • [22] Sambuc R., (1975) Fonctions 𝜙-floues. Application laide au diagnostic en pathologie thyroidienne, PhD Thesis, Univ. Marseille, France.
  • [23] Roy M.K., Biswas R. (1992) I-v fuzzy relations and Sanchez’s approach for medical diagnosis, Fuzzy Sets and Systems 47, 35-38.
  • [24] Szás À., (1987) Basic tools and mild continuties in relator spaces. Acta Math. Hungar. 50(3-4), 177–201.
  • [25] Tekin Ö., Öztürk M.A., İnan E., (2021) L-Fuzzy relations via proximal spaces. Thai J. Math. 19(2), 557–570, (2021).
  • [26] Tekin Ö., Öztürk M.A., (2022) Complex fuzzy proximal relator spaces, J. Mult.-Val. Log. Soft Comput. 38(3-4), 355–385.
  • [27] Tekin Ö., (2023) An approach for spherical fuzzy relations via relator spaces, J Intell Fuzzy Systems, 45(4), 6875–6886.
  • [28] Tekin Ö., (2024) A novel approximation of Pythagorean fuzzy sets via proximal relator spaces, J. Mult.-Val. Log. Soft Comput. 44(1-2), 71-93.
  • [29] Turksen I.B., (1986) Interval valued fuzzy sets based on normal forms. Fuzzy Sets and Systems, 20(2), 191-210.
  • [30] Xia, X. S., Liang, Q. L., (2008) Crosslayer design for mobile ad hoc networks using interval type-2 fuzzy logic systems., International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems, 16(3), 391- 408.
  • [31] Zadeh L.A., (1965) Fuzzy sets, Inform. and Control 8, 338-353.
  • [32] Zadeh L.A., (1975) The concept of a linguistic variable and its application to approximate reasoning-I, Inform. Sci. 8, 199-249.

Fuzzy Proximity Approach by Using Interval-Valued Fuzzy Sets

Year 2025, Volume: 18 Issue: 3, 713 - 725, 31.12.2025

Abstract

Interval-valued fuzzy sets are a generalization of classical fuzzy sets that the membership values are intervals. In the idea of interval-valued fuzzy sets, there is one real-valued membership degree of an element within the membership interval of possible membership degrees. By helping of interval-valued fuzzy relations, we build the concept of interval-valued fuzzy relations on proximal relator spaces. In our paper, the interval-valued fuzzy proximity axioms is investigated and given some examples. Also, we defined spatial Lodato and descriptive Lodato proximity relations.

References

  • [1] Atanassov K.T., (1986) Intuitionistic fuzzy sets. Fuzzy Sets and Systems 20, 87–96.
  • [2] Bustince H., (2000) Indicator of inclusion grade for intervalvalued fuzzy sets. Application to approximate reasoning based on interval-valued fuzzy sets., International Journal of Approximate Reasoning, 23(3) 137-209.
  • [3] Bustince H., Barrenechea, E., Pagola, M., Fernandez, J., (2009) Interval-valued fuzzy sets constructed from matrices: Application to edge detection., Fuzzy Sets and Systems, 60(13), 1819-1840.
  • [4] Chen S., Wang H., (2009) Evaluating students answer scripts based on interval-valued fuzzy grade sheets., Expert Systems with Applications, 36(6), 9839-9846 (2009).
  • [5] Choi, B., Rhee, F., (2009) Interval type-2 fuzzy membership function generation methods for pattern recognition, Information Sciences, 179(13), 2102-2122.
  • [6] Concilio A.D., Guadagni C., Peters J.F., Ramanna S., (2018) Descriptive proximities. properties and interplay between classical proximities and overlap, Mat. Comput. Sci. 12: 91– 106.
  • [7] Efremoviĉ V.A., (1952) The geometry of proximity. Mat. Sb. N.S. 31(73), 189–200.
  • [8] Gorzalzany M.B., (1987) A method of inference inapproximate reasoning based on interval- valued fuzzy sets, Fuzzy Sets and Systems 21, 1-17.
  • [9] Grattan-Guiness I., (1975) Fuzzy membership mapped onto interval and many-valued quantities. Z. Math. Logik. Grundladen Math. 22, 149-160.
  • [10] Jahn K.U., (1975) Intervall-wertige Mengen, Math.Nach. 68, 115-132.
  • [11] Lodato M.W., (1964) On topologically induced generalized proximity relations I. Proc. Amer. Math. Soc. 15(3), 417–422.
  • [12] Lodato M.W., (1966) On topologically induced generalized proximity relations II. Pacific J. Math. 17(1), 131–135.
  • [13] Martinez, R., Castillo, O., Aguilar, L.T., (2009) Optimization of interval type-2 fuzzy logic controllers for a perturbed autonomous wheeled mobile robot usinggenetic algorithms., Information Sciences, 179(13), 2158- 2174.
  • [14] Naimpally S.A., Warrack B.D., (1970) Proximity Spaces. Cambridge Tract. 59, England.
  • [15] Öztürk M.A., İnan E., Tekin Ö., Peters J.F. (2019) Fuzzy proximal relator spaces. Neural Comput. Appl. 31(7), 3201–3210.
  • [16] Öztürk M.A., (2025) Intuitionistic fuzzy proximal relator spaces, Southeast Asian Bull. Math., (Accepted).
  • [17] Peters J.F. (2013) Local near sets: pattern discovery in proximity spaces, Mat. Comput. Sci. 7(1), 87–106.
  • [18] Peters J.F., Naimpally S.A., (2012) Applications of near sets. Notices of the Amer. Math. Soc. 59(4), 536–542.
  • [19] Peters J.F.,(2013) Near sets: an introduction. Math. Comput. Sci. 7(1), 3–9.
  • [20] Peters J.F., (2016) Proximal relator spaces. Filomat 30(2), 469–472.
  • [21] Peters J.F., (2016) Computational Proximity. Excursions in the Topology of Digital Images, Intelligent Systems Reference Library, Springer.
  • [22] Sambuc R., (1975) Fonctions 𝜙-floues. Application laide au diagnostic en pathologie thyroidienne, PhD Thesis, Univ. Marseille, France.
  • [23] Roy M.K., Biswas R. (1992) I-v fuzzy relations and Sanchez’s approach for medical diagnosis, Fuzzy Sets and Systems 47, 35-38.
  • [24] Szás À., (1987) Basic tools and mild continuties in relator spaces. Acta Math. Hungar. 50(3-4), 177–201.
  • [25] Tekin Ö., Öztürk M.A., İnan E., (2021) L-Fuzzy relations via proximal spaces. Thai J. Math. 19(2), 557–570, (2021).
  • [26] Tekin Ö., Öztürk M.A., (2022) Complex fuzzy proximal relator spaces, J. Mult.-Val. Log. Soft Comput. 38(3-4), 355–385.
  • [27] Tekin Ö., (2023) An approach for spherical fuzzy relations via relator spaces, J Intell Fuzzy Systems, 45(4), 6875–6886.
  • [28] Tekin Ö., (2024) A novel approximation of Pythagorean fuzzy sets via proximal relator spaces, J. Mult.-Val. Log. Soft Comput. 44(1-2), 71-93.
  • [29] Turksen I.B., (1986) Interval valued fuzzy sets based on normal forms. Fuzzy Sets and Systems, 20(2), 191-210.
  • [30] Xia, X. S., Liang, Q. L., (2008) Crosslayer design for mobile ad hoc networks using interval type-2 fuzzy logic systems., International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems, 16(3), 391- 408.
  • [31] Zadeh L.A., (1965) Fuzzy sets, Inform. and Control 8, 338-353.
  • [32] Zadeh L.A., (1975) The concept of a linguistic variable and its application to approximate reasoning-I, Inform. Sci. 8, 199-249.
There are 32 citations in total.

Details

Primary Language English
Subjects Approximation Theory and Asymptotic Methods, Applied Mathematics (Other)
Journal Section Research Article
Authors

Özlem Tekin 0000-0001-9223-6149

Submission Date October 31, 2024
Acceptance Date September 2, 2025
Early Pub Date October 30, 2025
Publication Date December 31, 2025
Published in Issue Year 2025 Volume: 18 Issue: 3

Cite

APA Tekin, Ö. (2025). Fuzzy Proximity Approach by Using Interval-Valued Fuzzy Sets. Erzincan University Journal of Science and Technology, 18(3), 713-725.