Research Article
BibTex RIS Cite

Formation and Investigation of Photocatalytic Activities of TiO2/ZnO and TiO2/CuO Heterostructures on Nanostructured TiO2 Film Surfaces

Year 2019, , 63 - 73, 24.03.2019
https://doi.org/10.18185/erzifbed.423082

Abstract

In this study, the photocatalytic performance of each different oxide compound was investigated in three different stages on pure titanium surface by forming TiO2/ZnO and TiO2/CuO structures. Firstly; nanocomposite TiO2film structure was formed on pure titanium surface by electrochemical anodization technique. After this process, TiO2film surfaces were coated with Zn and Cu by electrolytic method. Zn and Cu coated specimens were heat treated at 500 oC for 2 hours to form TiO2/ZnO and TiO2/CuO structures. The crystal structure and surface morphology of the prepared samples were analyzed by X-ray diffractometer and scanning electron microscope. Photocatalytic performance tests were performed with absorbance measurements obtained from the methylene blue solution kept under ultraviolet light at certain time intervals. As a result of the tests, it is understood that the TiO2/ZnO sample has the best photocatalytic degradation performance and the reaction rate constant.

References

  • Chen, M. L., Cho, K. Y., & Oh, W. C. (2010). Synthesis and photocatalytic behaviors of Cr2O3–CNT/TiO2 composite materials under visible light. Journal of Materials Science, 45(24), 6611–6616. https://doi.org/10.1007/s10853-010-4751-6
  • Costa, D. L., Leite, R. S., Neves, G. A., Santana, L. N. de L., Medeiros, E. S., & Menezes, R. R. (2016). Synthesis of TiO2 and ZnO nano and submicrometric fibers by solution blow spinning. Materials Letters, 183, 109–113. https://doi.org/10.1016/J.MATLET.2016.07.073
  • Demirci, S., Dikici, T., Yurddaskal, M., Gultekin, S., Toparli, M., & Celik, E. (2016). Synthesis and characterization of Ag doped TiO2 heterojunction films and their photocatalytic performances. Applied Surface Science, 390, 591–601. https://doi.org/10.1016/j.apsusc.2016.08.145
  • Djurišić, A. B., Leung, Y. H., & Ching Ng, A. M. (2014). Strategies for improving the efficiency of semiconductor metal oxide photocatalysis. Materials Horizons, 1(4), 400. https://doi.org/10.1039/c4mh00031e
  • Guérin, V.-M., & Pauporté, T. (2011). From nanowires to hierarchical structures of template-free electrodeposited ZnO for efficient dye-sensitized solar cells. Energy & Environmental Science, 4(8), 2971. https://doi.org/10.1039/c1ee01218e
  • Hassan, M., Zhao, Y., & Xie, B. (2016). Employing TiO2 photocatalysis to deal with landfill leachate: Current status and development. Chemical Engineering Journal, 285, 264–275. https://doi.org/10.1016/J.CEJ.2015.09.093
  • He, Y., Sutton, N. B., Rijnaarts, H. H. H., & Langenhoff, A. A. M. (2016). Degradation of pharmaceuticals in wastewater using immobilized TiO2 photocatalysis under simulated solar irradiation. Applied Catalysis B: Environmental, 182, 132–141. https://doi.org/10.1016/J.APCATB.2015.09.015
  • Hoffmann, M. R., Martin, S. T., Choi, W., Bahnemannt, D. W., & Keck, W. M. (1995). Environmental Applications of Semiconductor Photocatalysis. Chem. Rev, 95, 69–96. Retrieved from https://pubs.acs.org/doi/pdf/10.1021/cr00033a004
  • In, S.-I., Vaughn, D. D., & Schaak, R. E. (2012). Hybrid CuO-TiO2−xNx Hollow Nanocubes for Photocatalytic Conversion of CO2 into Methane under Solar Irradiation. Angewandte Chemie, 124(16), 3981–3984. https://doi.org/10.1002/ange.201108936
  • Kim, H. S., Jung, S.-W., Ahn, K., & Kang, S. H. (2013). Enhanced light harvesting of CdSe quantum dot sensitized bilayered ZnO nanostar/TiO2 nanotubes. Current Applied Physics, 13, S162–S167. https://doi.org/10.1016/J.CAP.2013.01.006
  • Kim, S.-S., Na, S.-I., & Nah, Y.-C. (2011). TiO2 nanotubes decorated with ZnO rod-like nanostructures for efficient dye-sensitized solar cells. Electrochimica Acta, 58, 503–509. https://doi.org/10.1016/J.ELECTACTA.2011.09.076
  • Li, X. ., Li, F. ., Yang, C. ., & Ge, W. . (2001). Photocatalytic activity of WOx-TiO2 under visible light irradiation. Journal of Photochemistry and Photobiology A: Chemistry, 141(2–3), 209–217. https://doi.org/10.1016/S1010-6030(01)00446-4
  • Li, Y., Wang, J., Yao, H., Dang, L., & Li, Z. (2011). Chemical etching preparation of BiOI/Bi2O3 heterostructures with enhanced photocatalytic activities. Catalysis Communications, 12(7), 660–664. https://doi.org/10.1016/J.CATCOM.2010.12.011
  • Marimuthu, T., Anandhan, N., Thangamuthu, R., Mummoorthi, M., & Ravi, G. (2016). Synthesis of ZnO nanowire arrays on ZnOTiO2 mixed oxide seed layer for dye sensitized solar cell applications. Journal of Alloys and Compounds, 677, 211–218. https://doi.org/10.1016/J.JALLCOM.2016.03.219
  • Momeni, M. M., & Ghayeb, Y. (2015). Visible light-driven photoelectrochemical water splitting on ZnO–TiO2 heterogeneous nanotube photoanodes. Journal of Applied Electrochemistry, 45(6), 557–566. https://doi.org/10.1007/s10800-015-0836-x
  • Moradi, S., Aberoomand-Azar, P., Raeis-Farshid, S., Abedini-Khorrami, S., & Givianrad, M. H. (2016). The effect of different molar ratios of ZnO on characterization and photocatalytic activity of TiO2/ZnO nanocomposite. Journal of Saudi Chemical Society, 20(4), 373–378. https://doi.org/10.1016/J.JSCS.2012.08.002
  • Pirzada, B. M., Mir, N. A., Qutub, N., Mehraj, O., Sabir, S., & Muneer, M. (2015). Synthesis, characterization and optimization of photocatalytic activity of TiO2/ZrO2 nanocomposite heterostructures. Materials Science and Engineering: B, 193, 137–145. https://doi.org/10.1016/J.MSEB.2014.12.005
  • Roguska, A., Pisarek, M., Andrzejczuk, M., & Lewandowska, M. (2014). Synthesis and characterization of ZnO and Ag nanoparticle-loaded TiO2 nanotube composite layers intended for antibacterial coatings. Thin Solid Films, 553, 173–178. https://doi.org/10.1016/J.TSF.2013.11.057
  • Sakthivel, S., Neppolian, B., Shankar, M. V., Arabindoo, B., Palanichamy, M., & Murugesan, V. (2003). Solar photocatalytic degradation of azo dye: comparison of photocatalytic efficiency of ZnO and TiO2. Solar Energy Materials and Solar Cells, 77(1), 65–82. https://doi.org/10.1016/S0927-0248(02)00255-6
  • Sam, E. D., Urgen, M., & Tepehan, F. Z. (2007). TiO2 fotokatalistleri. Itüdergisi/Mühendislik, 6(5–6), 81–92. Retrieved from http://www.itudergi.itu.edu.tr/index.php/itudergisi_d/article/viewFile/395/337
  • Schneider, J., Matsuoka, M., Takeuchi, M., Zhang, J., Horiuchi, Y., Anpo, M., & Bahnemann, D. W. (2014). Understanding TiO2 Photocatalysis: Mechanisms and Materials. Chemical Reviews, 114(19), 9919–9986. https://doi.org/10.1021/cr5001892
  • Sheng, P., Li, W., Du, P., Cao, K., & Cai, Q. (2016). Multi-functional CuO nanowire/TiO2 nanotube arrays photoelectrode synthesis, characterization, photocatalysis and SERS applications. Talanta, 160, 537–546. https://doi.org/10.1016/J.TALANTA.2016.07.043
  • Wang, Y., Wang, Q., Zhan, X., Wang, F., Safdar, M., & He, J. (2013). Visible light driven type II heterostructures and their enhanced photocatalysis properties: a review. Nanoscale, 5(18), 8326. https://doi.org/10.1039/c3nr01577g
  • Xie, Y.-L., Li, Z.-X., Xu, Z.-G., & Zhang, H.-L. (2011). Preparation of coaxial TiO2/ZnO nanotube arrays for high-efficiency photo-energy conversion applications. Electrochemistry Communications, 13(8), 788–791. https://doi.org/10.1016/J.ELECOM.2011.05.003
  • Yurddaskal, M., Dikici, T., & Celik, E. (2016). Effect of annealing temperature on the surface properties and photocatalytic efficiencies of Cu2O/CuO structures obtained by thermal oxidation of Cu layer on titanium substrates. Ceramics International, 42(15), 17749–17753. https://doi.org/10.1016/j.ceramint.2016.08.102
  • Zhang, X., Wang, L., Liu, C., Ding, Y., Zhang, S., Zeng, Y., Luo, S. (2016). A bamboo-inspired hierarchical nanoarchitecture of Ag/CuO/TiO2 nanotube array for highly photocatalytic degradation of 2,4-dinitrophenol. Journal of Hazardous Materials, 313, 244–252. https://doi.org/10.1016/J.JHAZMAT.2016.03.094
  • Zou, C. W., Wang, J., & Xie, W. (2016). Synthesis and enhanced NO2 gas sensing properties of ZnO nanorods/TiO2 nanoparticles heterojunction composites. Journal of Colloid and Interface Science, 478, 22–28. https://doi.org/10.1016/J.JCIS.2016.05.061

Nanoyapılı TiO2 Film Yüzeyinde TiO2/ZnO ve TiO2/CuO Heteroyapıların Oluşturulması ve Fotokatalitik Aktivitelerinin İncelenmesi

Year 2019, , 63 - 73, 24.03.2019
https://doi.org/10.18185/erzifbed.423082

Abstract

Bu çalışmada, saf titanyum yüzeyinde üç farklı aşamada TiO2/ZnO ve TiO2/CuO heteroyapıları oluşturularak her bir farklı oksit bileşiğin fotokatalitik performansları incelenmiştir. İlk olarak; elektrokimyasal anotlama tekniği ile saf titanyum yüzeyinde nanoyapılı TiO2film yapısı oluşturulmuştur. Bu işlemin sonrasında, TiO2film yüzeylerine elektrolitik yöntemle Zn ve Cu kaplanmıştır. Zn ve Cu kaplanmış bu örnekler 500 oC’de 2 saat boyunca ısıl işleme tabi tutularak TiO2/ZnO ve TiO2/CuO yapılarının oluşumu sağlanmıştır. Hazırlanan örneklerin kristalin yapısı ve yüzey morfolojisi X ışını kırınım cihazı ve taramalı elektron mikroskobu ile analiz edilmiştir. Fotokatalitik performans testleri, belirli zaman aralıklarında ultraviyole ışık altında bekletilen metilen mavisi çözeltisinden alınan absorbans ölçümleri ile gerçekleştirilmiştir. Testlerin sonucunda en iyi fotokatalitik bozundurma performansına ve reaksiyon hız sabitine TiO2/ZnO numunesinin sahip olduğu anlaşılmıştır.

References

  • Chen, M. L., Cho, K. Y., & Oh, W. C. (2010). Synthesis and photocatalytic behaviors of Cr2O3–CNT/TiO2 composite materials under visible light. Journal of Materials Science, 45(24), 6611–6616. https://doi.org/10.1007/s10853-010-4751-6
  • Costa, D. L., Leite, R. S., Neves, G. A., Santana, L. N. de L., Medeiros, E. S., & Menezes, R. R. (2016). Synthesis of TiO2 and ZnO nano and submicrometric fibers by solution blow spinning. Materials Letters, 183, 109–113. https://doi.org/10.1016/J.MATLET.2016.07.073
  • Demirci, S., Dikici, T., Yurddaskal, M., Gultekin, S., Toparli, M., & Celik, E. (2016). Synthesis and characterization of Ag doped TiO2 heterojunction films and their photocatalytic performances. Applied Surface Science, 390, 591–601. https://doi.org/10.1016/j.apsusc.2016.08.145
  • Djurišić, A. B., Leung, Y. H., & Ching Ng, A. M. (2014). Strategies for improving the efficiency of semiconductor metal oxide photocatalysis. Materials Horizons, 1(4), 400. https://doi.org/10.1039/c4mh00031e
  • Guérin, V.-M., & Pauporté, T. (2011). From nanowires to hierarchical structures of template-free electrodeposited ZnO for efficient dye-sensitized solar cells. Energy & Environmental Science, 4(8), 2971. https://doi.org/10.1039/c1ee01218e
  • Hassan, M., Zhao, Y., & Xie, B. (2016). Employing TiO2 photocatalysis to deal with landfill leachate: Current status and development. Chemical Engineering Journal, 285, 264–275. https://doi.org/10.1016/J.CEJ.2015.09.093
  • He, Y., Sutton, N. B., Rijnaarts, H. H. H., & Langenhoff, A. A. M. (2016). Degradation of pharmaceuticals in wastewater using immobilized TiO2 photocatalysis under simulated solar irradiation. Applied Catalysis B: Environmental, 182, 132–141. https://doi.org/10.1016/J.APCATB.2015.09.015
  • Hoffmann, M. R., Martin, S. T., Choi, W., Bahnemannt, D. W., & Keck, W. M. (1995). Environmental Applications of Semiconductor Photocatalysis. Chem. Rev, 95, 69–96. Retrieved from https://pubs.acs.org/doi/pdf/10.1021/cr00033a004
  • In, S.-I., Vaughn, D. D., & Schaak, R. E. (2012). Hybrid CuO-TiO2−xNx Hollow Nanocubes for Photocatalytic Conversion of CO2 into Methane under Solar Irradiation. Angewandte Chemie, 124(16), 3981–3984. https://doi.org/10.1002/ange.201108936
  • Kim, H. S., Jung, S.-W., Ahn, K., & Kang, S. H. (2013). Enhanced light harvesting of CdSe quantum dot sensitized bilayered ZnO nanostar/TiO2 nanotubes. Current Applied Physics, 13, S162–S167. https://doi.org/10.1016/J.CAP.2013.01.006
  • Kim, S.-S., Na, S.-I., & Nah, Y.-C. (2011). TiO2 nanotubes decorated with ZnO rod-like nanostructures for efficient dye-sensitized solar cells. Electrochimica Acta, 58, 503–509. https://doi.org/10.1016/J.ELECTACTA.2011.09.076
  • Li, X. ., Li, F. ., Yang, C. ., & Ge, W. . (2001). Photocatalytic activity of WOx-TiO2 under visible light irradiation. Journal of Photochemistry and Photobiology A: Chemistry, 141(2–3), 209–217. https://doi.org/10.1016/S1010-6030(01)00446-4
  • Li, Y., Wang, J., Yao, H., Dang, L., & Li, Z. (2011). Chemical etching preparation of BiOI/Bi2O3 heterostructures with enhanced photocatalytic activities. Catalysis Communications, 12(7), 660–664. https://doi.org/10.1016/J.CATCOM.2010.12.011
  • Marimuthu, T., Anandhan, N., Thangamuthu, R., Mummoorthi, M., & Ravi, G. (2016). Synthesis of ZnO nanowire arrays on ZnOTiO2 mixed oxide seed layer for dye sensitized solar cell applications. Journal of Alloys and Compounds, 677, 211–218. https://doi.org/10.1016/J.JALLCOM.2016.03.219
  • Momeni, M. M., & Ghayeb, Y. (2015). Visible light-driven photoelectrochemical water splitting on ZnO–TiO2 heterogeneous nanotube photoanodes. Journal of Applied Electrochemistry, 45(6), 557–566. https://doi.org/10.1007/s10800-015-0836-x
  • Moradi, S., Aberoomand-Azar, P., Raeis-Farshid, S., Abedini-Khorrami, S., & Givianrad, M. H. (2016). The effect of different molar ratios of ZnO on characterization and photocatalytic activity of TiO2/ZnO nanocomposite. Journal of Saudi Chemical Society, 20(4), 373–378. https://doi.org/10.1016/J.JSCS.2012.08.002
  • Pirzada, B. M., Mir, N. A., Qutub, N., Mehraj, O., Sabir, S., & Muneer, M. (2015). Synthesis, characterization and optimization of photocatalytic activity of TiO2/ZrO2 nanocomposite heterostructures. Materials Science and Engineering: B, 193, 137–145. https://doi.org/10.1016/J.MSEB.2014.12.005
  • Roguska, A., Pisarek, M., Andrzejczuk, M., & Lewandowska, M. (2014). Synthesis and characterization of ZnO and Ag nanoparticle-loaded TiO2 nanotube composite layers intended for antibacterial coatings. Thin Solid Films, 553, 173–178. https://doi.org/10.1016/J.TSF.2013.11.057
  • Sakthivel, S., Neppolian, B., Shankar, M. V., Arabindoo, B., Palanichamy, M., & Murugesan, V. (2003). Solar photocatalytic degradation of azo dye: comparison of photocatalytic efficiency of ZnO and TiO2. Solar Energy Materials and Solar Cells, 77(1), 65–82. https://doi.org/10.1016/S0927-0248(02)00255-6
  • Sam, E. D., Urgen, M., & Tepehan, F. Z. (2007). TiO2 fotokatalistleri. Itüdergisi/Mühendislik, 6(5–6), 81–92. Retrieved from http://www.itudergi.itu.edu.tr/index.php/itudergisi_d/article/viewFile/395/337
  • Schneider, J., Matsuoka, M., Takeuchi, M., Zhang, J., Horiuchi, Y., Anpo, M., & Bahnemann, D. W. (2014). Understanding TiO2 Photocatalysis: Mechanisms and Materials. Chemical Reviews, 114(19), 9919–9986. https://doi.org/10.1021/cr5001892
  • Sheng, P., Li, W., Du, P., Cao, K., & Cai, Q. (2016). Multi-functional CuO nanowire/TiO2 nanotube arrays photoelectrode synthesis, characterization, photocatalysis and SERS applications. Talanta, 160, 537–546. https://doi.org/10.1016/J.TALANTA.2016.07.043
  • Wang, Y., Wang, Q., Zhan, X., Wang, F., Safdar, M., & He, J. (2013). Visible light driven type II heterostructures and their enhanced photocatalysis properties: a review. Nanoscale, 5(18), 8326. https://doi.org/10.1039/c3nr01577g
  • Xie, Y.-L., Li, Z.-X., Xu, Z.-G., & Zhang, H.-L. (2011). Preparation of coaxial TiO2/ZnO nanotube arrays for high-efficiency photo-energy conversion applications. Electrochemistry Communications, 13(8), 788–791. https://doi.org/10.1016/J.ELECOM.2011.05.003
  • Yurddaskal, M., Dikici, T., & Celik, E. (2016). Effect of annealing temperature on the surface properties and photocatalytic efficiencies of Cu2O/CuO structures obtained by thermal oxidation of Cu layer on titanium substrates. Ceramics International, 42(15), 17749–17753. https://doi.org/10.1016/j.ceramint.2016.08.102
  • Zhang, X., Wang, L., Liu, C., Ding, Y., Zhang, S., Zeng, Y., Luo, S. (2016). A bamboo-inspired hierarchical nanoarchitecture of Ag/CuO/TiO2 nanotube array for highly photocatalytic degradation of 2,4-dinitrophenol. Journal of Hazardous Materials, 313, 244–252. https://doi.org/10.1016/J.JHAZMAT.2016.03.094
  • Zou, C. W., Wang, J., & Xie, W. (2016). Synthesis and enhanced NO2 gas sensing properties of ZnO nanorods/TiO2 nanoparticles heterojunction composites. Journal of Colloid and Interface Science, 478, 22–28. https://doi.org/10.1016/J.JCIS.2016.05.061
There are 27 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Makaleler
Authors

Tuncay Dikici 0000-0002-7004-9788

Metin Yurddaşkal 0000-0001-7293-1216

Publication Date March 24, 2019
Published in Issue Year 2019

Cite

APA Dikici, T., & Yurddaşkal, M. (2019). Nanoyapılı TiO2 Film Yüzeyinde TiO2/ZnO ve TiO2/CuO Heteroyapıların Oluşturulması ve Fotokatalitik Aktivitelerinin İncelenmesi. Erzincan University Journal of Science and Technology, 12(1), 63-73. https://doi.org/10.18185/erzifbed.423082