Research Article
BibTex RIS Cite

Effective Atomic Number and Electron Density Determination of Some Amino Acids by Using Scattering Intensity Ratio of 59.54 keV Gamma Rays

Year 2018, , 394 - 400, 30.12.2018
https://doi.org/10.18185/erzifbed.435600

Abstract

In this study the specific atomic arguments have
been determined for
F-Glycine (C2H5O2N),
Alenine (L, D) (C
3H7O2N), Leucine (L, D) (C6H13O2N),
L-Proline (C
5H9O2N) amino acids
. The calculation procedure of the experimental values of atomic
parameters was carried out by using scattering intensity ratios of γ-rays.
These γ-rays were obtained from 5 Ci
241Am annular radioactive
source.
  In traditional studies, these
arguments were determined by transmission technique. The scattered γ-rays were
counted by using an HPGe semiconductor detector. Our detecting system was connected
to a separate amplifier and an Accuspec card. Theoretical values of related
atomic parameters for amino acid targets were calculated and cross checked with
our experiential values. Our deliberated values are in good concordance with
theoretical calculations.

References

  • Akman, F., Geçibesler, I.H., Sayyed, M.I., Tijani, S.A., Tufekci, A.R., Demirtas, I. 2018. Determination of some useful radiation interaction parameters for waste foods. Nuclear Engineering and Technology, 50, 944-949.
  • Baris, T., Tongucb, Arslana, H., Al-Buriahi, M.S. 2018. Studies on mass attenuation coefficients, effective atomic numbers and electron densities for some biomolecules. Radiation Physics and Chemistry, 153, 86–91.
  • Demir., D, Turşucu, A. 2013. Measurement of the effective atomic number of FexCr1_x and FexNix alloys using scattering of gamma rays. Journal of Alloys and Compounds, 581, 213-216.
  • Elmahroug, Y., Tellili, B., Souga, C. 2015. Determination of total mass attenuation constants, effective atomic numbers and electron densities for different shielding materials. Annals of Nuclear Energy 75 268.
  • Eritenko, A.N., Tsvetiansky, A.L., Pole, A, A. 2018. Analytical dependence of effective atomic number on the elemental composition of matter and radiation energy in the range 10–1000 keV. Nuclear Instruments and Methods in Physics Research B, 414, 107–112.
  • Firestone, R.B., Ekström, L.P. 2004. http://ie.lbl.gov.toi/ WWW Table of Radioactive Isotopes, Version 2.1, January.
  • Hosamani, M.M., Badiger, N.M. 2018. Determination of effective atomic number of composite materials using backscattered gamma photons – A novel Method. Chemical Physics Letters, 695, 94–98.
  • Hubbell, J.H., Overbo, I.J. 1979. Relativistic atomic form factors and photon coherent scattering cross-section. Journal of Physical and Chemical Reference Data, 8, 69.
  • Kong, X., Dang, L., Shao, X., Yin, L., Ji, Y., 2018. Rapid method for determination of 90Sr in biological samples by liquid scintillation counting after separation on synthesized column. Journal of Environmental Radioactivity, 193–194, 15–19.
  • Morteza, A., Nolan, L., John, T., Yeow, W. 2013. Effective atomic numbers and electron densities of bacteriorhodopsin and its comprising amino acids in the energy range 1 keV–100 GeV. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 300, 30.
  • Muhadar, G.S., Sahota, H.S. 1988. Effective atomic number studies in different soils for total photon interaction in the energy region 10–5000 kev. Applied Radiation and Isotopes, 39, 1251.
  • Singh, M. P., Singh, B., Sandhu, B.S. 2007. Measurement of the effective atomic number of composite materials using Rayleigh to Compton scattering of 279 keV gamma rays. Physica Scripta, 76, 281.
  • Singh, M. P., Singh, B., Sandhu, B.S. 2009. Investigations of multiple scattering of 320 keV rays: a new technique for assigning effective atomic number to composite material. Physica Scripta, 79, 035101.
  • Singh, M.P., Sharma, A., Singh, B., Sandhu, B.S. 2010a. Non-destructive evaluation of scientific and biological samples by scattering of 145 keV gamma rays. Radiation Measurements 45, 960.
  • Singh, M. P., Sharma, A., Singh, B., Sandhu, B.S. 2010b. A non-destructive technique for assigning effective atomic number to scientific samples by scattering of 59.54 keV gamma photons. Nuclear Instruments and Methods in Physics Research Section A: Accelerators,Spectrometers,detectors and Associated Equipment, 619, 63.
  • Weyrich, W. 1975. The electron momentum distribution in solidpotassium fluoride, studied by Compton scattering. Berichte der Bunsengesellschaft für physikalische chemie, 79,11-1085.

Effective Atomic Number and Electron Density Determination of Some Amino Acids by Using Scattering Intensity Ratio of 59.54 keV Gamma Rays

Year 2018, , 394 - 400, 30.12.2018
https://doi.org/10.18185/erzifbed.435600

Abstract




Bu çalışmada H, C, N ve O içeren F-Glycine
(C
2H5O2N), Alenine (L, D) (C3H7O2N),
Leucine (L, D) (C
6H13O2N), L-Proline (C5H9O2N)
aminoasitlerinin
etkin atom numarası ve elektron yoğunlukları
belirlenmiştir. Diğer çalışmalardan farklı olarak, ilgili parametreler gamma
ışınlarının saçılma şiddet oranları kullanılarak tespit edilmiştir.
Geleneksel uygulamalarda soğurma tekniği kullanılarak tespitler
yapılmaktadır. 5 Ci
güce sahip 241Am
radyoaktif halka izotop kullanılarak gamma ışınları elde edilmiştir. 5 Ci
241Am
halka kaynaktan yayınlanan gamma ışınları hedeften saçılmıştır. Saçılan
fotonlar HPGe yarıiletken dedektör kullanılarak sayılmıştır. Dedektör
sistemine bağlı yükseltici ve Accuspec kartı bulunmaktadır. Teorik değerler,
deneyler sonucunda elde edilen değerler ile karşılaştırılmıştır ve uyum
içinde oldukları tespit edilmiştir.
                           

      
                             

References

  • Akman, F., Geçibesler, I.H., Sayyed, M.I., Tijani, S.A., Tufekci, A.R., Demirtas, I. 2018. Determination of some useful radiation interaction parameters for waste foods. Nuclear Engineering and Technology, 50, 944-949.
  • Baris, T., Tongucb, Arslana, H., Al-Buriahi, M.S. 2018. Studies on mass attenuation coefficients, effective atomic numbers and electron densities for some biomolecules. Radiation Physics and Chemistry, 153, 86–91.
  • Demir., D, Turşucu, A. 2013. Measurement of the effective atomic number of FexCr1_x and FexNix alloys using scattering of gamma rays. Journal of Alloys and Compounds, 581, 213-216.
  • Elmahroug, Y., Tellili, B., Souga, C. 2015. Determination of total mass attenuation constants, effective atomic numbers and electron densities for different shielding materials. Annals of Nuclear Energy 75 268.
  • Eritenko, A.N., Tsvetiansky, A.L., Pole, A, A. 2018. Analytical dependence of effective atomic number on the elemental composition of matter and radiation energy in the range 10–1000 keV. Nuclear Instruments and Methods in Physics Research B, 414, 107–112.
  • Firestone, R.B., Ekström, L.P. 2004. http://ie.lbl.gov.toi/ WWW Table of Radioactive Isotopes, Version 2.1, January.
  • Hosamani, M.M., Badiger, N.M. 2018. Determination of effective atomic number of composite materials using backscattered gamma photons – A novel Method. Chemical Physics Letters, 695, 94–98.
  • Hubbell, J.H., Overbo, I.J. 1979. Relativistic atomic form factors and photon coherent scattering cross-section. Journal of Physical and Chemical Reference Data, 8, 69.
  • Kong, X., Dang, L., Shao, X., Yin, L., Ji, Y., 2018. Rapid method for determination of 90Sr in biological samples by liquid scintillation counting after separation on synthesized column. Journal of Environmental Radioactivity, 193–194, 15–19.
  • Morteza, A., Nolan, L., John, T., Yeow, W. 2013. Effective atomic numbers and electron densities of bacteriorhodopsin and its comprising amino acids in the energy range 1 keV–100 GeV. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 300, 30.
  • Muhadar, G.S., Sahota, H.S. 1988. Effective atomic number studies in different soils for total photon interaction in the energy region 10–5000 kev. Applied Radiation and Isotopes, 39, 1251.
  • Singh, M. P., Singh, B., Sandhu, B.S. 2007. Measurement of the effective atomic number of composite materials using Rayleigh to Compton scattering of 279 keV gamma rays. Physica Scripta, 76, 281.
  • Singh, M. P., Singh, B., Sandhu, B.S. 2009. Investigations of multiple scattering of 320 keV rays: a new technique for assigning effective atomic number to composite material. Physica Scripta, 79, 035101.
  • Singh, M.P., Sharma, A., Singh, B., Sandhu, B.S. 2010a. Non-destructive evaluation of scientific and biological samples by scattering of 145 keV gamma rays. Radiation Measurements 45, 960.
  • Singh, M. P., Sharma, A., Singh, B., Sandhu, B.S. 2010b. A non-destructive technique for assigning effective atomic number to scientific samples by scattering of 59.54 keV gamma photons. Nuclear Instruments and Methods in Physics Research Section A: Accelerators,Spectrometers,detectors and Associated Equipment, 619, 63.
  • Weyrich, W. 1975. The electron momentum distribution in solidpotassium fluoride, studied by Compton scattering. Berichte der Bunsengesellschaft für physikalische chemie, 79,11-1085.
There are 16 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Makaleler
Authors

Ahmet Turşucu 0000-0002-4963-697X

Publication Date December 30, 2018
Published in Issue Year 2018

Cite

APA Turşucu, A. (2018). Effective Atomic Number and Electron Density Determination of Some Amino Acids by Using Scattering Intensity Ratio of 59.54 keV Gamma Rays. Erzincan University Journal of Science and Technology, 11(3), 394-400. https://doi.org/10.18185/erzifbed.435600