Research Article
BibTex RIS Cite

7075 Alüminyum Malzemesinin Frezelenmesinde Yüzey Pürüzlülüğünün Yanıt Yüzey Metodu İle Optimizasyonu

Year 2019, , 326 - 335, 24.03.2019
https://doi.org/10.18185/erzifbed.461223

Abstract

Talaşlı imalat sırasında yüksek kaliteli yüzeyler elde
etmek için bazı kesme parametrelerinin dikkate alınması gerekir. Yanlış seçilen
kesme parametreleri, hem kesici takımın çabuk aşınmasına hemde yüzeyin
istenilen kalitede olmasını engellemektedir. Bundan dolayı, optimum kesme
parametreleri ile daha kaliteli yüzeyler elde etmek için çeşitli deneysel
tasarım yöntemlerinin kullanılması büyük önem taşımaktadır. Bu çalışmada,
sanayinin farklı alanlarında kullanılan Al 7075 malzemesi kuru işleme
şartlarında frezeleme yöntemi ile işlenmiştir. İşleme sırasında kullanılan
kesme hızı, ilerleme hızı ve talaş derinliği gibi işleme parametrelerinin
optimizasyonu, yanıt yüzey metodu ile kombine edilmiş üç seviyeli Box-Behnken
deney tasarımı oluşturularak, optimum işleme şartları tespit edilmiştir.
Frezeleme sonucu oluşan yüzey pürüzlülüğü (Ra) değerleri ölçülerek Design
Expert 10.0.6 programında analiz edilmiş ve yüzey pürüzlülüğünü etkileyen kesme
parametreleri optimize edilmiştir. Sonuç olarak, optimum yüzey pürüzlülüğü
90,06 m/dak kesme hızı, 0,13 mm/dev ilerleme hızı ve 0,85 mm talaş derinliğinde
1,9383 µm olarak belirlenmiştir. Bunun yanı sıra yapılan analizlerin sonuçlara
göre ilerleme hızının yüzey pürüzlülüğü üzerinde en büyük etkiye sahip olan
parametre olduğu belirlenmiştir.

References

  • Anwar, R., et al., Optimization of Surface Roughness for Al-Alloy 7075-T in Milling Process. Technical Journal, University of Engineering and Technology, 2015. 20(11).
  • Subramanian, M., M. Sakthivel, and R. Sudhakaran, Modeling and analysis of surface roughness of AL7075-T6 in end milling process using response surface methodology. Arabian Journal for Science and Engineering, 2014. 39(10): p. 7299-7313.
  • Gunay, M., Investigation of the interaction between the surface quality and rake angle in machining of AISI 1040 steel. Sigma-Journal of Engineering and Natural Sciences, 2008. 26(2): p. 105-111.
  • Sukvittayawong, S. And I. Inasaki, Optimization of turning process by cutting force measurement. JSME international journal. Ser. 3, Vibration, control engineering, engineering for industry, 1991. 34(4): p. 546-552.
  • Zhao, T. and Y. Jiang, Fatigue of 7075-T651 aluminum alloy. International Journal of Fatigue, 2008. 30(5): p. 834-849.
  • Şeker, U., Talaşlı İmalatta Takım Tasarımı. GÜ Fen Bilimleri Enstitüsü Yüksek Lisans Ders Notları, Ankara, 2000.
  • Guvercin, S. and A. Yildiz, Optimization Of Cutting Parameters Using The Response Surface Method. Sigma Journal Of Engineering And Natural Sciences-Sigma Muhendislik Ve Fen Bilimleri Dergisi, 2018. 36(1): p. 113-121.
  • Sahoo, P., Optimization Of Turning Parameters For Surface Roughness Using Rsm And Ga. Advances in Production Engineering & Management, 2011. 6(3).
  • Tzeng, C.-J., et al., Optimization of turning operations with multiple performance characteristics using the Taguchi method and Grey relational analysis. Journal of materials processing technology, 2009. 209(6): p. 2753-2759.
  • Azam, M., et al., Surface roughness modeling using RSM for HSLA steel by coated carbide tools. The International Journal of Advanced Manufacturing Technology, 2015. 78(5-8): p. 1031-1041.
  • Öktem, H., T. Erzurumlu, and H. Kurtaran, Application of response surface methodology in the optimization of cutting conditions for surface roughness. Journal of materials processing technology, 2005. 170(1-2): p. 11-16.
  • Singh, D. and P.V. Rao, A surface roughness prediction model for hard turning process. The International Journal of Advanced Manufacturing Technology, 2007. 32(11-12): p. 1115-1124.
  • Zhang, J.Z., J.C. Chen, and E.D. Kirby, Surface roughness optimization in an end-milling operation using the Taguchi design method. Journal of materials processing technology, 2007. 184(1-3): p. 233-239.
  • Murat, A., Optimization of process parameters with minimum surface roughness in the pocket machining of AA5083 aluminum alloy via Taguchi method. Arab Journal of Science and Engineering, 2013. 38: p. 705-714.
  • Sharma, A., M.D. Sharma, and R. Sehgal, Experimental Study of Machining Characteristics of Titanium Alloy (Ti–6Al–4V). Arabian Journal for Science and Engineering, 2013. 38(11): p. 3201-3209.
  • Francis, V. and A. Dubey, Application of Taguchi and response surface methodologies for surface roughness in face milling operation. International Journal of Mechanical and Production Engineering Research and Development, 2013. 3(2): p. 213-220.
  • Montgomery, D.C., Design and Analysis of Experiments, 4th ed.,. John Wiley and Sons Inc., New York., 1997.
  • Öney, Ö. And S. Samanli, Kütahya/Altıntaş Grafitlerinin Kaba Flotasyon Parametrelerinin Box-Behnken Deney Tasarımı Kullanılarak Optimizasyonu ve Modellenmesi. Journal of Science and Engineering, 2017. 19(56).
  • Chu, T., K. Fuh, and W. Yeh, Modelling and analysis of deep drawing with utilisation of vibrations and servo press using response surface methodology. Materials Research Innovations, 2014. 18(sup2): p. S2-936-S2-939.
  • Box, G.E. and N.R. Draper, Response surfaces, mixtures, and ridge analyses. Vol. 649. 2007: John Wiley & Sons.
Year 2019, , 326 - 335, 24.03.2019
https://doi.org/10.18185/erzifbed.461223

Abstract

References

  • Anwar, R., et al., Optimization of Surface Roughness for Al-Alloy 7075-T in Milling Process. Technical Journal, University of Engineering and Technology, 2015. 20(11).
  • Subramanian, M., M. Sakthivel, and R. Sudhakaran, Modeling and analysis of surface roughness of AL7075-T6 in end milling process using response surface methodology. Arabian Journal for Science and Engineering, 2014. 39(10): p. 7299-7313.
  • Gunay, M., Investigation of the interaction between the surface quality and rake angle in machining of AISI 1040 steel. Sigma-Journal of Engineering and Natural Sciences, 2008. 26(2): p. 105-111.
  • Sukvittayawong, S. And I. Inasaki, Optimization of turning process by cutting force measurement. JSME international journal. Ser. 3, Vibration, control engineering, engineering for industry, 1991. 34(4): p. 546-552.
  • Zhao, T. and Y. Jiang, Fatigue of 7075-T651 aluminum alloy. International Journal of Fatigue, 2008. 30(5): p. 834-849.
  • Şeker, U., Talaşlı İmalatta Takım Tasarımı. GÜ Fen Bilimleri Enstitüsü Yüksek Lisans Ders Notları, Ankara, 2000.
  • Guvercin, S. and A. Yildiz, Optimization Of Cutting Parameters Using The Response Surface Method. Sigma Journal Of Engineering And Natural Sciences-Sigma Muhendislik Ve Fen Bilimleri Dergisi, 2018. 36(1): p. 113-121.
  • Sahoo, P., Optimization Of Turning Parameters For Surface Roughness Using Rsm And Ga. Advances in Production Engineering & Management, 2011. 6(3).
  • Tzeng, C.-J., et al., Optimization of turning operations with multiple performance characteristics using the Taguchi method and Grey relational analysis. Journal of materials processing technology, 2009. 209(6): p. 2753-2759.
  • Azam, M., et al., Surface roughness modeling using RSM for HSLA steel by coated carbide tools. The International Journal of Advanced Manufacturing Technology, 2015. 78(5-8): p. 1031-1041.
  • Öktem, H., T. Erzurumlu, and H. Kurtaran, Application of response surface methodology in the optimization of cutting conditions for surface roughness. Journal of materials processing technology, 2005. 170(1-2): p. 11-16.
  • Singh, D. and P.V. Rao, A surface roughness prediction model for hard turning process. The International Journal of Advanced Manufacturing Technology, 2007. 32(11-12): p. 1115-1124.
  • Zhang, J.Z., J.C. Chen, and E.D. Kirby, Surface roughness optimization in an end-milling operation using the Taguchi design method. Journal of materials processing technology, 2007. 184(1-3): p. 233-239.
  • Murat, A., Optimization of process parameters with minimum surface roughness in the pocket machining of AA5083 aluminum alloy via Taguchi method. Arab Journal of Science and Engineering, 2013. 38: p. 705-714.
  • Sharma, A., M.D. Sharma, and R. Sehgal, Experimental Study of Machining Characteristics of Titanium Alloy (Ti–6Al–4V). Arabian Journal for Science and Engineering, 2013. 38(11): p. 3201-3209.
  • Francis, V. and A. Dubey, Application of Taguchi and response surface methodologies for surface roughness in face milling operation. International Journal of Mechanical and Production Engineering Research and Development, 2013. 3(2): p. 213-220.
  • Montgomery, D.C., Design and Analysis of Experiments, 4th ed.,. John Wiley and Sons Inc., New York., 1997.
  • Öney, Ö. And S. Samanli, Kütahya/Altıntaş Grafitlerinin Kaba Flotasyon Parametrelerinin Box-Behnken Deney Tasarımı Kullanılarak Optimizasyonu ve Modellenmesi. Journal of Science and Engineering, 2017. 19(56).
  • Chu, T., K. Fuh, and W. Yeh, Modelling and analysis of deep drawing with utilisation of vibrations and servo press using response surface methodology. Materials Research Innovations, 2014. 18(sup2): p. S2-936-S2-939.
  • Box, G.E. and N.R. Draper, Response surfaces, mixtures, and ridge analyses. Vol. 649. 2007: John Wiley & Sons.
There are 20 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Makaleler
Authors

Levent Uğur 0000-0003-3447-3191

Publication Date March 24, 2019
Published in Issue Year 2019

Cite

APA Uğur, L. (2019). 7075 Alüminyum Malzemesinin Frezelenmesinde Yüzey Pürüzlülüğünün Yanıt Yüzey Metodu İle Optimizasyonu. Erzincan University Journal of Science and Technology, 12(1), 326-335. https://doi.org/10.18185/erzifbed.461223