Research Article
BibTex RIS Cite

Investigation of Structural Behavior of Full-Scale Reinforced Concrete Columns Subjected to Corrosion under Monotonic Loading Effect: Suggestions for Corrosion Studies

Year 2019, , 695 - 713, 31.08.2019
https://doi.org/10.18185/erzifbed.478287

Abstract



The estimation of the
seismic performance of reinforced concrete structures exposed to corrosion is
more difficult than uncorroded structures. By this experimental study, it was
aimed to keep light on the studies to be done on the reinforced concrete members
exposed to corrosion. Five full-scale reinforced concrete columns were
corroded for different corrosion levels by using the accelerated corrosion
method. The corroded reinforced concrete columns were subjected to monotonic
loading under constant axial load and, their yield and ultimate loads,
ductility ratios and energy absorption capacities were obtained by
experimentally. The actual corrosion levels in the reinforced concrete
columns were obtained by breaking the reinforced concrete columns after the loading
tests and extracting all embedded reinforced concrete bars from the concrete.
As a result of this experimental study, the weaknesses of monotonic loading
compared to reversed-cyclic loading were evaluated for considered earthquake
indicators. Based on the obtained experimental test results, important
recommendations were suggested for further corrosion studies. Within the
scope of this study, the ductility ratios and energy dissipation capacities
of corroded reinforced concrete columns were decreased as the corrosion
levels were increased under the influence of monotonic loading. The
confinement effect up to a certain value of corrosion levels and regarding
with increasing in earthquake indicator could not been clearly observed under
the influence of monotonic loading. Two empirical models to predict the
ductility ratios and energy dissipation capacities were developed to be used
for seismic assessment of corroded reinforced concrete columns considering
the unilateral failure mode.


References

  • ASTM (American Standards for Testing and Materials), (2003). “Standard practice for preparing, cleaning, and evaluating corrosion test specimens” G1-03, West Conshohocken, PA, 1-9.
  • Ahmad, S. (2017). “Prediction of residual flexural strength of corroded reinforced concrete beams” Anti-Corros. Methods Mater., 64(1), 69-74.
  • Amleh, L., Ghosh, A. (2006). “Modeling the effect of corrosion on bond strength at the steel-concrete interface with finite-element analysis” Can. J. Civ. Eng., 33(6), 673-682.
  • Auyeung, Y., Balaguru, P., Chung, L. (2000). “Bond behavior of corroded reinforcement bars” Mater. J., 97(2), 214-220.
  • Azad, AK., Ahmad, S., Al-Gohi, BHA. (2010). “Flexural strength of corroded reinforced concrete beams” Mag. Concr. Res., 62(6), 405-414.
  • Bicer, K., Yalciner, H., Pekrioglu, BA., Kumbasaroglu, A. (2018). “Effect of corrosion on flexural strength of reinforced concrete beams with polypropylene fibers” Constr. Build. Mater., 185, 574-588.
  • Campione, G., Cannella, F., Cavaleri, L. (2017). “Shear and flexural strength prediction of corroded RC beams” Constr. Build. Mater., 149, 395-405.
  • Chung, L., Cho, SH., Kim, JHJ., Yi, ST. (2004). “Correction factor suggestion for ACI development length provisions based on flexural testing of RC slabs with various levels of corroded reinforcing bars” Eng. Struct., 26(8), 1013-1026.
  • Coronelli, D., Gambarova, P. (2004). “Structural assessment of corroded reinforced concrete beams: modeling guidelines” J. Struct. Eng., 130(8), 1214-1224.
  • FEMA (Federal Emergency Management Agency), (2007). “Interim testing protocols for determining the seismic performance characteristics of structural and nonstructural components” FEMA-461, Washington, DC, 1-113.
  • El Maaddawy, T., Soudki, K., Topper, T. (2005). “Long-term performance of corrosion-damaged reinforced concrete beams” ACI Struct. J., 102(5), 649-56.
  • El Maaddawy, T., Chahrour, A., Soudki, K. (2006). “Effect of fiber-reinforced polymer wraps on corrosion activity and concrete cracking in chloride-contaminated concrete cylinders” J. Compos. Constr., 10(2), 139-147.
  • Guo, A., Li, H., Ba, X., Guan, X., Li, H. (2015). “Experimental investigation on the cyclic performance of reinforced concrete piers with chloride-induced corrosion in marine environment” Eng. Struct., 105, 1-11.
  • Hanjari, KZ., Kettil, P., Lundgren, K. (2011). “Analysis of mechanical behavior of corroded reinforced concrete structures” ACI Struct. J., 108(5), 532-541.
  • Jnaid, F., Aboutaha, RS. (2016). “Residual flexural strength of corroded reinforced concrete beams” Eng. Struct., 119, 198-216.
  • Lee, HS., Kage, T., Noguchi, T., Tomosawa, F. (1999). “The evaluation of flexural strength of RC beams damaged by rebar corrosion” Proceeding of 8th International Conference, Durability of Building Materials and Components, Ottawa, Canada, 321-330.
  • Li, D., Wei, R., Xing, F., Sui, L., Zhou, Y., Wang, W. (2018). “Influence of Non-uniform corrosion of steel bars on the seismic behavior of reinforced concrete columns” Constr. Build. Mater., 167, 20-32.
  • Liu, Y., Weyers, RE. (1998). “Modeling the time-to-corrosion cracking in chloride contaminated reinforced concrete structures” ACI Mater. J., 95(6), 675-680.
  • Ma, Y., Che, Y., Gong, J. (2012). “Behavior of corrosion damaged circular reinforced concrete columns under cyclic loading” Constr. Build. Mater., 29, 548-556.
  • Malumbela, G., Alexander, M., Moyo, P. (2009). “Steel corrosion on RC structures under sustained service loads-A critical review” Eng. Struct., 31(11), 2518-2525.
  • Meda, A., Mostosi, S., Rinaldi, Z., Riva, P. (2014). “Experimental evaluation of the corrosion influence on the cyclic behaviour of RC columns” Eng. Struct., 76:112-23.
  • O’Flaherty, FJ., Mangart, PS., Lambert, P., Browne, EH. (2008). “Effect of under reinforcement on the flexural behaviour of corroded beams” Mater. Struct., 41(2), 311-321.
  • Paul, SC., Babafemi, AJ., Conradie, K., van, Zijl, GPAG. (2016). “Applied voltage on corrosion mass loss and cracking behavior of steel-reinforced SHCC and mortar specimens” J. Mater. Civil. Eng., 29(5), 1-9.
  • Sezen, H. (2000). “Seismic behavior and modeling of reinforced concrete building columns” Doctor of Philosophy, Engineering - Civil and Environmental Engineering, University of California, Berkeley, 1-336.
  • Yalciner, H., Eren, O., Sensoy, S. (2012). “An experimental study on the bond strength between reinforcement bars and concrete as a function of concrete cover, strength and corrosion level” Cem. Concr. Res., 42(5), 643-655.
  • Yalciner, H., Sensoy, S., Eren, O. (2015). “Seismic performance assessment of a corroded 50-year-old reinforced concrete building” J. Struct. Eng., 141(12), 1-11.
  • Yalciner, H. (2017). “Paslanmaya maruz kalmış betonarme kirişlerde geo-grid kullanımının süneklik üzerindeki etkisi” FBA-2016-330, Erzincan Üniversitesi Bilimsel Araştırma Projeleri Koordinasyon Birimi, 13 pp.
  • Yang, SY., Song, XB., Jia, HX., Chen, X., Liu, XL. (2016). “Experimental research on hysteretic behaviors of corroded reinforced concrete columns with different maximum amounts of corrosion of rebar” Constr. Build. Mater., 121, 319-327.

Paslanmaya Maruz Kalmış Tam Ölçekli Betonarme Kolonların Monotonik Yükleme Etkisi Altında Yapısal Davranışlarının İncelenmesi: Korozyon Çalışmaları İçin Öneriler

Year 2019, , 695 - 713, 31.08.2019
https://doi.org/10.18185/erzifbed.478287

Abstract



Korozyona maruz kalmış betonarme yapıların sismik
performanslarının tahmin edilmesi korozyona uğramamış yapılara göre daha
zordur. Gerçekleştirilen bu deneysel çalışma ile birlikte korozyona maruz
kalmış betonarme elemanları üzerine yapılacak olan çalışmalara ışık tutulması
amaçlanmıştır. Beş adet tam ölçekli betonarme kolonu hızlandırılmış korozyon
yöntemi kullanılarak farklı korozyon oranları için paslandırılmıştır.
Paslandırılmış betonarme kolonları sabit eksenel yük altında monotonik
yüklemeye tabi tutularak, akma ve nihai yükleri, süneklik oranları ve enerji
yutma kapasiteleri deneysel olarak elde edilmiştir. Betonarme kolonlarındaki
gerçek korozyon oranları yükleme deneylerinden sonra betonarme kolonlarının
kırılarak ve gömülü olan tüm betonarme donatılarının çıkartılması ile elde
edilmiştir. Yapılan deneysel çalışma sonucunda, monotonik yüklemenin tersinir-tekrarlanır yüklemeye
göre zayıf yönleri göz önüne alınan deprem indeksleri açısından
değerlendirilmiştir. Elde edilen deneysel sonuçlar doğrultusunda ileriki
korozyon çalışmaları için önemli önerilerde bulunulmuştur. Gerçekleştirilen
bu çalışma kapsamında, paslanmış betonarme kolonlarının monotonik yükleme
etkisi altında süneklik oranları ve enerji yutma kapasiteleri artan korozyon
oranına bağlı olarak azalmıştır. Monotonik yükleme etkisi altında pasın
belirli oranlarına kadar sağlamış olduğu sargı etkisi ve buna bağlı olarak
deprem indekslerindeki artışlar net bir şekilde görülememiştir. Tek
doğrultuda göçme modu kabulü ile yapılacak olan sismik değerlendirmelerde
kullanılmak üzere paslanmış betonarme kolonların süneklik ve enerji yutma
kapasitelerinin tahmin edilebilmesi için iki ampirik model
geliştirilmiştir. 


References

  • ASTM (American Standards for Testing and Materials), (2003). “Standard practice for preparing, cleaning, and evaluating corrosion test specimens” G1-03, West Conshohocken, PA, 1-9.
  • Ahmad, S. (2017). “Prediction of residual flexural strength of corroded reinforced concrete beams” Anti-Corros. Methods Mater., 64(1), 69-74.
  • Amleh, L., Ghosh, A. (2006). “Modeling the effect of corrosion on bond strength at the steel-concrete interface with finite-element analysis” Can. J. Civ. Eng., 33(6), 673-682.
  • Auyeung, Y., Balaguru, P., Chung, L. (2000). “Bond behavior of corroded reinforcement bars” Mater. J., 97(2), 214-220.
  • Azad, AK., Ahmad, S., Al-Gohi, BHA. (2010). “Flexural strength of corroded reinforced concrete beams” Mag. Concr. Res., 62(6), 405-414.
  • Bicer, K., Yalciner, H., Pekrioglu, BA., Kumbasaroglu, A. (2018). “Effect of corrosion on flexural strength of reinforced concrete beams with polypropylene fibers” Constr. Build. Mater., 185, 574-588.
  • Campione, G., Cannella, F., Cavaleri, L. (2017). “Shear and flexural strength prediction of corroded RC beams” Constr. Build. Mater., 149, 395-405.
  • Chung, L., Cho, SH., Kim, JHJ., Yi, ST. (2004). “Correction factor suggestion for ACI development length provisions based on flexural testing of RC slabs with various levels of corroded reinforcing bars” Eng. Struct., 26(8), 1013-1026.
  • Coronelli, D., Gambarova, P. (2004). “Structural assessment of corroded reinforced concrete beams: modeling guidelines” J. Struct. Eng., 130(8), 1214-1224.
  • FEMA (Federal Emergency Management Agency), (2007). “Interim testing protocols for determining the seismic performance characteristics of structural and nonstructural components” FEMA-461, Washington, DC, 1-113.
  • El Maaddawy, T., Soudki, K., Topper, T. (2005). “Long-term performance of corrosion-damaged reinforced concrete beams” ACI Struct. J., 102(5), 649-56.
  • El Maaddawy, T., Chahrour, A., Soudki, K. (2006). “Effect of fiber-reinforced polymer wraps on corrosion activity and concrete cracking in chloride-contaminated concrete cylinders” J. Compos. Constr., 10(2), 139-147.
  • Guo, A., Li, H., Ba, X., Guan, X., Li, H. (2015). “Experimental investigation on the cyclic performance of reinforced concrete piers with chloride-induced corrosion in marine environment” Eng. Struct., 105, 1-11.
  • Hanjari, KZ., Kettil, P., Lundgren, K. (2011). “Analysis of mechanical behavior of corroded reinforced concrete structures” ACI Struct. J., 108(5), 532-541.
  • Jnaid, F., Aboutaha, RS. (2016). “Residual flexural strength of corroded reinforced concrete beams” Eng. Struct., 119, 198-216.
  • Lee, HS., Kage, T., Noguchi, T., Tomosawa, F. (1999). “The evaluation of flexural strength of RC beams damaged by rebar corrosion” Proceeding of 8th International Conference, Durability of Building Materials and Components, Ottawa, Canada, 321-330.
  • Li, D., Wei, R., Xing, F., Sui, L., Zhou, Y., Wang, W. (2018). “Influence of Non-uniform corrosion of steel bars on the seismic behavior of reinforced concrete columns” Constr. Build. Mater., 167, 20-32.
  • Liu, Y., Weyers, RE. (1998). “Modeling the time-to-corrosion cracking in chloride contaminated reinforced concrete structures” ACI Mater. J., 95(6), 675-680.
  • Ma, Y., Che, Y., Gong, J. (2012). “Behavior of corrosion damaged circular reinforced concrete columns under cyclic loading” Constr. Build. Mater., 29, 548-556.
  • Malumbela, G., Alexander, M., Moyo, P. (2009). “Steel corrosion on RC structures under sustained service loads-A critical review” Eng. Struct., 31(11), 2518-2525.
  • Meda, A., Mostosi, S., Rinaldi, Z., Riva, P. (2014). “Experimental evaluation of the corrosion influence on the cyclic behaviour of RC columns” Eng. Struct., 76:112-23.
  • O’Flaherty, FJ., Mangart, PS., Lambert, P., Browne, EH. (2008). “Effect of under reinforcement on the flexural behaviour of corroded beams” Mater. Struct., 41(2), 311-321.
  • Paul, SC., Babafemi, AJ., Conradie, K., van, Zijl, GPAG. (2016). “Applied voltage on corrosion mass loss and cracking behavior of steel-reinforced SHCC and mortar specimens” J. Mater. Civil. Eng., 29(5), 1-9.
  • Sezen, H. (2000). “Seismic behavior and modeling of reinforced concrete building columns” Doctor of Philosophy, Engineering - Civil and Environmental Engineering, University of California, Berkeley, 1-336.
  • Yalciner, H., Eren, O., Sensoy, S. (2012). “An experimental study on the bond strength between reinforcement bars and concrete as a function of concrete cover, strength and corrosion level” Cem. Concr. Res., 42(5), 643-655.
  • Yalciner, H., Sensoy, S., Eren, O. (2015). “Seismic performance assessment of a corroded 50-year-old reinforced concrete building” J. Struct. Eng., 141(12), 1-11.
  • Yalciner, H. (2017). “Paslanmaya maruz kalmış betonarme kirişlerde geo-grid kullanımının süneklik üzerindeki etkisi” FBA-2016-330, Erzincan Üniversitesi Bilimsel Araştırma Projeleri Koordinasyon Birimi, 13 pp.
  • Yang, SY., Song, XB., Jia, HX., Chen, X., Liu, XL. (2016). “Experimental research on hysteretic behaviors of corroded reinforced concrete columns with different maximum amounts of corrosion of rebar” Constr. Build. Mater., 121, 319-327.
There are 28 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Makaleler
Authors

Hakan Yalciner 0000-0002-7289-3384

Atila Kumbasaroglu 0000-0002-6338-4553

Mehmet Fırat Mermit This is me

Rameen Kohistani This is me

Aqludin Karimi This is me

Publication Date August 31, 2019
Published in Issue Year 2019

Cite

APA Yalciner, H., Kumbasaroglu, A., Mermit, M. F., Kohistani, R., et al. (2019). Paslanmaya Maruz Kalmış Tam Ölçekli Betonarme Kolonların Monotonik Yükleme Etkisi Altında Yapısal Davranışlarının İncelenmesi: Korozyon Çalışmaları İçin Öneriler. Erzincan University Journal of Science and Technology, 12(2), 695-713. https://doi.org/10.18185/erzifbed.478287