One possible solution to the
increasing energy demand, which mankind has been facing through, might be
pointed as the nuclear reactors that work with the fission mechanism. In
order to pursue the operation of these facilities, many equipment have been
designed in a way that all of them could operate together where the control
rods could be given as one of the vital parts among them. Material properties
of these components, such as physical-chemical characteristics and their
behaviors under different interactions, have an undeniable importance. Due to
that, gathering all the possible information about the materials used for the
production of these components is extremely important. By considering this
importance, in this study, the mass stopping power and charged particle
penetration distance calculations have been done for some materials which
have possible usage in nuclear reactor control rods using alphas, 3He,
tritons, deuterons and protons within the energy range of 1-50 MeV via
employing two of the most known computer aided calculation and simulation
software which are GEANT4 and MCNP. Obtained results from both codes have
been visualized by graphing and compared with each other.
Agostinelli, S., et al., 2003. “Geant4-a simulation toolkit”. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 506(3), 250-303.
Artun, O. 2018a. “Calculation of the mass stopping powers of medical, chemical, and industrial compounds and mixtures”. Nuclear Technology and Radiation Protection, 33(4), 356–362.
Artun, O. 2018b. “Estimation of Mass Stopping Power and Range via a New Computer Program X-PMSP”. Iranian Journal of Science and Technology, Transactions A: Science, 43(2), 639–643.
Ashby, M. F., Smidman, M. 2010. “Materials for Nuclear Power Systems”, Granta Material Inspiration.
Attix, F. H. 1986. “Introduction to Radiological Physics and Radiation Dosimetry”, Wiley-Interscience, New York.
Becker, U., Coppi, B., Cosman, E., Demos, P., Kerman, A., Milner, R. 2008. “A perspective on the future energy supply of the United States: the urgent need for increased nuclear power”, MIT Faculty Newsletter, XXI (2), 6-7
Bethe, H. A., Ashkin, J. 1953. “Passage of Radiations through Matter” in Experimental Nuclear Physics Vol. 1, ed. by E. Segre, John Wiley & Sons, New York.
Bragg, W. H., Kleeman, R. 1905. “On the α particles of radium, and their loss of range in passing through various atoms and molecules”. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 10 (57), 318-340.
Evans, R. D. 1955. “The atomic nucleus”, McGraw Hill Book Company, Inc., New York.
Goorley, J. T., et al., 2013. “Initial MCNP6 release overview-MCNP6 version 1.0”, https://laws.lanl.gov/vhosts/mcnp.lanl.gov/pdf_files/la-ur-13-22934.pdf, Access: October 5th, 2018.
Groom, D. E., Klein, S. R. 2000. “Passage of particles through matter”. The European Physical Journal C, 15(1-4), 163-173.
IAEA (International Energy Agency), 1995. “Advances in control assembly materials for water reactors”, IAEATECDOC-813, https://inis.iaea.org/collection/NCLCollectionStore/_Public/26/077/26077302.pdf?r=1&r=1, Access: May 8th, 2019
IAEA (International Energy Agency), 1996. “Absorber Materials, Control Rods and Designs of Shutdown Systems for Advanced Liquid Metal Fast Reactors”, IAEATECDOC-884, http://www.iaea.org/inis/collection/NCLCollectionStore/_Public/27/072/27072854.pdf, Access: May 8th, 2019
IAEA (International Energy Agency), 2000. “Control assembly materials for water reactors: Experience, performance and perspectives”, IAEATECDOC-1132, http://www-pub.iaea.org/MTCD/Publications/PDF/te_1132_prn.pdf, Access: May 8th, 2019
IAEA (International Energy Agency), 2017. “World Energy Outlook 2017”, OECD Publishing, Paris, p 763.
Kalcheva, S., Koonen, E. 2007. “Optimized Control Rods of the BR2 Reactor”, Open Report SCK-CEN-BLG-1054, SCK-CEN, http://publications.sckcen.be/dspace/bitstream/10038/814/1/cr_report.pdf, Access: May 8th, 2019
Paul, H., Schinner, A. 2003. “Empirical stopping power tables for ions from 3Li to 18Ar and from 0.001 to 1000MeV/nucleon in solids and gases”. Atomic Data and Nuclear Data Tables, 85(2), 377-452.
PRIS (Power Reactor Information System), https://www.iaea.org/pris/, Access: May 8th, 2019
Seltzer, S. M., Berger, M. J. 1982. “Procedure for calculating the radiation stopping power for electrons”. The International Journal of Applied Radiation and Isotopes, 33 (11), 1219-1226.
Sternheimer, R. M., Berger, M. J., Seltzer, S. M. 1984. “Density effect for the ionization loss of charged particles in various substances”. Atomic Data and Nuclear Data Tables, 30(2), 261-271.
Tekin, H. O., Manici, T. 2017. “Simulations of mass attenuation coefficients for shielding materials using the MCNP-X code”. Nuclear Science and Techniques, 28 (7), 95(1)-95(4).
Bazı Nükleer Reaktör Kontrol Çubuğu Malzemelerinde Yüklü Parçacık Giricilik Mesafesi ve Kütle Durdurma Gücü Hesaplamaları
İnsanlığın karşılaştığı artan enerji talebine olası bir
çözüm, fisyon mekanizmasıyla çalışan nükleer reaktörler olarak
gösterilebilir. Bu tesislerin çalışmalarını takip edebilmek için, aralarında
hayati öneme sahip olarak gösterilebilecek kontrol çubuklarının da bulunduğu
ve tamamı birlikte çalışabilecek şekilde tasarlanmış pek çok ekipman
bulunmaktadır. Bu bileşenlerin fiziksel-kimyasal özellikleri ve farklı
etkileşimlerdeki davranışları gibi malzeme özellikleri yadsınamaz bir öneme
sahiptir. Bu nedenle, bu bileşenlerin üretiminde kullanılan malzemelerle
ilgili olası tüm bilgilerin toplanması son derece önemlidir. Bu önem göz
önünde bulundurarak bu çalışmada, nükleer reaktör kontrol çubuklarında
kullanım olasılığı bulunan bazı materyaller için kütle durdurma gücü ve yüklü
parçacık giricilik mesafesi 1-50 MeV enerji aralığındaki alfa, 3He,
triton, döteron ve protonlar için en çok bilinen bilgisayar destekli
hesaplama ve benzetim programları olan GEANT4 ve MCNP kullanılarak
yapılmıştır. Her iki koddan elde edilen sonuçlar grafikle görselleştirilmiş
ve birbirleriyle kıyaslanmıştır.
Agostinelli, S., et al., 2003. “Geant4-a simulation toolkit”. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 506(3), 250-303.
Artun, O. 2018a. “Calculation of the mass stopping powers of medical, chemical, and industrial compounds and mixtures”. Nuclear Technology and Radiation Protection, 33(4), 356–362.
Artun, O. 2018b. “Estimation of Mass Stopping Power and Range via a New Computer Program X-PMSP”. Iranian Journal of Science and Technology, Transactions A: Science, 43(2), 639–643.
Ashby, M. F., Smidman, M. 2010. “Materials for Nuclear Power Systems”, Granta Material Inspiration.
Attix, F. H. 1986. “Introduction to Radiological Physics and Radiation Dosimetry”, Wiley-Interscience, New York.
Becker, U., Coppi, B., Cosman, E., Demos, P., Kerman, A., Milner, R. 2008. “A perspective on the future energy supply of the United States: the urgent need for increased nuclear power”, MIT Faculty Newsletter, XXI (2), 6-7
Bethe, H. A., Ashkin, J. 1953. “Passage of Radiations through Matter” in Experimental Nuclear Physics Vol. 1, ed. by E. Segre, John Wiley & Sons, New York.
Bragg, W. H., Kleeman, R. 1905. “On the α particles of radium, and their loss of range in passing through various atoms and molecules”. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 10 (57), 318-340.
Evans, R. D. 1955. “The atomic nucleus”, McGraw Hill Book Company, Inc., New York.
Goorley, J. T., et al., 2013. “Initial MCNP6 release overview-MCNP6 version 1.0”, https://laws.lanl.gov/vhosts/mcnp.lanl.gov/pdf_files/la-ur-13-22934.pdf, Access: October 5th, 2018.
Groom, D. E., Klein, S. R. 2000. “Passage of particles through matter”. The European Physical Journal C, 15(1-4), 163-173.
IAEA (International Energy Agency), 1995. “Advances in control assembly materials for water reactors”, IAEATECDOC-813, https://inis.iaea.org/collection/NCLCollectionStore/_Public/26/077/26077302.pdf?r=1&r=1, Access: May 8th, 2019
IAEA (International Energy Agency), 1996. “Absorber Materials, Control Rods and Designs of Shutdown Systems for Advanced Liquid Metal Fast Reactors”, IAEATECDOC-884, http://www.iaea.org/inis/collection/NCLCollectionStore/_Public/27/072/27072854.pdf, Access: May 8th, 2019
IAEA (International Energy Agency), 2000. “Control assembly materials for water reactors: Experience, performance and perspectives”, IAEATECDOC-1132, http://www-pub.iaea.org/MTCD/Publications/PDF/te_1132_prn.pdf, Access: May 8th, 2019
IAEA (International Energy Agency), 2017. “World Energy Outlook 2017”, OECD Publishing, Paris, p 763.
Kalcheva, S., Koonen, E. 2007. “Optimized Control Rods of the BR2 Reactor”, Open Report SCK-CEN-BLG-1054, SCK-CEN, http://publications.sckcen.be/dspace/bitstream/10038/814/1/cr_report.pdf, Access: May 8th, 2019
Paul, H., Schinner, A. 2003. “Empirical stopping power tables for ions from 3Li to 18Ar and from 0.001 to 1000MeV/nucleon in solids and gases”. Atomic Data and Nuclear Data Tables, 85(2), 377-452.
PRIS (Power Reactor Information System), https://www.iaea.org/pris/, Access: May 8th, 2019
Seltzer, S. M., Berger, M. J. 1982. “Procedure for calculating the radiation stopping power for electrons”. The International Journal of Applied Radiation and Isotopes, 33 (11), 1219-1226.
Sternheimer, R. M., Berger, M. J., Seltzer, S. M. 1984. “Density effect for the ionization loss of charged particles in various substances”. Atomic Data and Nuclear Data Tables, 30(2), 261-271.
Tekin, H. O., Manici, T. 2017. “Simulations of mass attenuation coefficients for shielding materials using the MCNP-X code”. Nuclear Science and Techniques, 28 (7), 95(1)-95(4).
Şekerci, M., Özdoğan, H., & Kaplan, A. (2019). Charged Particle Penetration Distance and Mass Stopping Power Calculations on Some Nuclear Reactor Control Rod Materials. Erzincan University Journal of Science and Technology, 12(2), 1103-1115. https://doi.org/10.18185/erzifbed.562185