Review
BibTex RIS Cite

Drug Used in the Treatment of Alzheimer’s Disease and New Approaches

Year 2019, , 1149 - 1159, 31.08.2019
https://doi.org/10.18185/erzifbed.591088

Abstract

Alzheimer’s disease, which is responsible for the majority of the
dementia cases, has become an important health problem especially in western
countries due to the rapidly aging population. Though the nature of the disease
has not been totally understood yet drug development studies continue based on
various hypotheses. None of the current drugs can not stop or reverse the
progress of the disease. In this review, 
current drugs and new targets are included. In this context, current
drugs, approaches based on amiloid and tau hypotheses, and relationship between
microglial cells and Alzheimer’s disease are researched and molecul examples
developed for new targets are included.

References

  • 1. Müller P, Fendt M, Müller NG 2019. “Drug treatment of Alzheimer's dementia : Status quo and perspectives” Internist (Berl).doi: 10.1007/s00108-019-0625-4.
  • 2. Hawkins K.E, Duchen M., 2019. “Modelling mitochondrial dysfunction in Alzheimer’s disease using human induced pluripotent stem cells” World J Stem Cells. 11(5): 236–253.
  • 3. Saito S., Yamamoto Y., Ihara M., 2019. “Development of a Multicomponent Intervention to Prevent Alzheimer's Disease” Front Neurol. 8;10:490.
  • 4. Nonaka S., Nakanishi H., 2019. “Microglial clearance of focal apoptotic synapses” Neurosci Lett. 5:134317.
  • 5. Lane C.A., Hardy J., Schott J.M., 2018. “Alzheimer's disease” Eur J Neurol. 25(1):59-70.
  • 6. Chen X.Q., Mobley W.C. 2019. “Exploring the Pathogenesis of Alzheimer Disease in Basal For Brain Cholinergic Neurons: Converging Insights From Alternative Hypotheses” Front Neurosci. 7;13:446.
  • 7. Márquez F., Yassa M.A., 2019. “Neuroimaging Biomarkers for Alzheimer's Disease” Mol Neurodegener. 7;14(1):21.
  • 8. Herrmann N., Chau SA., Kircanski I., Lanctôt K.L., 2011. “Current and Emerging Drug Treatment Options for Alzheimer’s Disease A Systematic Review” Drugs 71 (15): 2031-2065.
  • 9. Colović M.B., Krstić D.Z., Lazarević-Pašti T.D., Bondžić A.M., Vasić V.M., 2013. “Acetylcholinesterase inhibitors: pharmacology and toxicology” Curr Neuropharmacol. 11(3):315–335
  • 10. Radic Z., Taylor P., 2001. “Peripheral Site Ligands Accelerate Inhibition of Acetylcholinesterase by Neutral Organophosphates” J. Appl. Toxicol. 21, 13–14.
  • 11. Axelsen P.H., Harel M., Silman I., Sussman J.L., 1994. “Structure and Dynamics of the active site gorge of acetylcholineesterase: synergistic use of molecular Dynamics simulation and X-ray crystallography”Protein Sci. 3(2): 188–197
  • 12. Marum, R.J.V., 2009. “Update on the use of memantine in Alzheimer’s disease”Neuropsychiatr Dis Treat. 2009; 5: 237–247.
  • 13. Wallace T.L., Porter R.H.P., 2011. “Targeting the nicotinic alpha7 acetylcholine receptor to enhance cognitionin disease” Biochemical Pharmacology 82 891–903.
  • 14. Liu Q., Kawai H., Berg D.K., 2001.“beta-Amyloid peptide blocks the response of alpha 7-containing nicotinic receptors on hippocampal neurons”Proc Natl Acad Sci USA, 98, 4734-4739
  • 15. Hashimoto K., Koike K., Shimizu E., Iyo M., 2005. “α7 Nicotinic Receptor Agonists as Potential Therapeutic Drugs for Schizophrenia” Curr. Med. Chem. – Central Nervous System Agents. 5. 171-184.
  • 16. Lao K., Ji N., Zhang X., Qiao W., Tang Z., Gou X., 2019” Drug development for Alzheimer’s disease: review” Journal of Drug Targeting, 27:2, 164-173
  • 17. Murphy MP, LeVine H 3rd., 2010. “Alzheimer's disease and the amyloid-beta peptide”. J Alzheimers Dis. 19(1):311–323.
  • 18. Bongarzone S., Savickas V., Luzi F., Gee A.D., 2017. “Targeting the Receptor for Advanced Glycation Endproducts (RAGE): A Medicinal Chemistry Perspective”. J Med Chem. 60(17):7213–7232.
  • 19. Scott J.D., Li S.W., Brunskill A.P.J., Chen X., Cox K., Cumming J.N., Forman M., Gilbert E.J., Hodgson R.A., Hyde L.A., Jiang Q., Iserloh U., Kazakevich I., Kuvelkar R., Mei H., Meredith J., Misiaszek J., Orth P., Rossiter L.M., Slater M., Stone J., Strickland C.O., Voigt J.H., Wang G., Wang H., Wu Y., Greenlee W.J., Parker E.M., Kennedy M.E., Stamford A.W., 2016. “Discovery of the 3-Imino-1,2,4-thiadiazinane 1,1-Dioxide Derivative Verubecestat (MK-8931)–A β-Site Amyloid Precursor Protein Cleaving Enzyme 1 Inhibitor for the Treatment of Alzheimer’s Disease” Journal of Medicinal Chemistry 59 (23), 10435-10450.
  • 20. Egan F.M., Kost J., Voss T., Mukai Y., Aisen P.S., Cummings J.L., Tariot P.N., Vellas B., Dyck C.H.V., Boada M., Zhang Y., Li W., Furtek C., Mahoney E., Mozley L.H., Mo Y., Sur C., Michelson D., 2019. “Randomized Trial of Verubecestat for Prodromal Alzheimer’s Disease” N Engl J Med 380:1408-20
  • 21. Olsauskas-Kuprys R, Zlobin A, Osipo C., 2013.“Gamma secretase inhibitors of Notch signaling”. Onco Targets Ther. 6:943–955.
  • 22. Strooper B.D., 2014. “ Lessons from a Failed γ-Secretase Alzheimer Trial”Cell. 159(4), 721-726
  • 23. Wolfe M.S., 2008. “Inhibition and modulation of γ-secretase for Alzheimer’s disease” Neurotherapeutics 5(3): 391–398
  • 24. Weggen S., Rogers M., Eriksen J., 2007. “NSAIDs: small molecules for prevention of Alzheimer’s disease orprecursors for future drug development?” TRENDS in Pharmacological Sciences 28(10), 536-543
  • 25. Imbimbo B.P., 2009. “Why did tarenflurbil fail in Alzheimer's disease?” J Alzheimers Dis. 17(4):757-60
  • 26. Kierdorf K., Fritz G., 2013. “RAGE regulation and signaling in inflammation and beyond”J Leukoc Biol. 94(1):55-68
  • 27. Han Y.T., Choi G.I., Son D., Kim N.J., Yun H., Lee S., Chang D.J., Hong H.S., Kim H., Ha H.J., Kim Y.H., Park H.J., Lee J., Suh Y.G., 2012.” Ligand-Based Design, Synthesis, and Biological Evaluation of 2- Aminopyrimidines, a Novel Series of Receptor for Advanced Glycation End Products (RAGE) Inhibitors “J. Med. Chem., 55 (21), 9120–9135
  • 28. Bendlin B.B., 2019. “Antidiabetic therapies and Alzheimer disease” DIALOGUESIN CLINICAL NEUROSCIENCE 21(1); 83-91
  • 29. Grundke-Iqbal I., Iqbal K.,Tung Y.C.,Quinlan M., Wisniewski H.M.,Binder L.I., 1986. “Abnormal phosphorylation of the microtubule-associated protein τ (tau) in Alzheimer cytoskeletal pathology” Proc. Natl. Acad. Sci.83, 4913-4917
  • 30. Li C., Götz J., 2017. “Tau-based therapies in neurodegeneration: opportunities and challenges” Nature Reviews Drug Discovery 16, 863–883.
  • 31. Anand K, Sabbagh M., 2015. “Early investigational drugs targeting tau protein for the treatment of Alzheimer's disease” . Expert Opin Investig Drugs 24(10):1355–1360
  • 32. Baddeley T.C., McCaffrey J., Storey J.M.D., Cheung J.K.S., Melis V., Horsley D., Harrington C.R., Wischik C.M., 2015. “Complex Disposition of Methylthioninium Redox Forms Determines Efficacy in Tau Aggregation Inhibitor Therapy for Alzheimer’s Disease” J Pharmacol Exp Ther 352:110–118
  • 33. Song GJ., Suk K., 2017. “Pharmacological Modulation of Functional Phenotypes of Microglia in Neurodegenerative Diseases”Front Aging Neurosci9: 139. doi: 10.3389/fnagi.2017.00139
  • 34. J., Michelle L., 2012. “Targeting Microglia-Mediated Neurotoxicity: The Potential of NOX2 Inhibitors” Cell Mol Life Sci. 69(14): 2409–2427
  • 35. Tanveer R., McGuinness N., Daniel S., Campbell A.G.V.A., 2012. “Cannabinoid receptors and neurodegenerative diseases” WIREs Membr Transp Signal 1:633–639.
  • 36. Cummings JL, Morstorf T, Zhong K, 2014. “Alzheimer's disease drug-development pipeline: few candidates, frequent failures”Alzheimers Res Ther. 6(4):37.

Alzheimer Hastalığının Tedavisinde Kullanılan İlaçlar ve Yeni Yaklaşımlar

Year 2019, , 1149 - 1159, 31.08.2019
https://doi.org/10.18185/erzifbed.591088

Abstract

Demansların büyük çoğunluğundan sorumlu olan Alzheimer Hastalığı hızla
yaşlanan nüfusla birlikte özellikle batı toplumlarında büyük bir sağlık sorunu
haline gelmiştir. Hastalığın doğası tam olarak anlaşılamasa da çeşitli
hipotezlere dayalı olarak ilaç geliştirme çalışmaları devam etmektedir. Mevcut
ilaçlardan hiçbiri hastalığın ilerleyişini durduramamakta ya da geri
çevirememektedir. Bu nedenle de hastalığın temelini hedef alan yeni ilaçlara
büyük bir gereksinim vardır. Bu derlemede Alzheimer Hastalığı için mevcut olarak
kullanılan ilaçlara ve yeni hedeflere yer verilmiştir. Bu kapsamda mevcut
ilaçlar, amiloid hipotezini temel alan yaklaşımlar, tau hipotezini temel alan
yaklaşımlar ve mikroglialar ile Alzheimer Hastalığı arasındaki ilişki
incelenmiş, yeni hedeflere yönelik geliştirilen molekül örneklerine yer
verilmiştir

References

  • 1. Müller P, Fendt M, Müller NG 2019. “Drug treatment of Alzheimer's dementia : Status quo and perspectives” Internist (Berl).doi: 10.1007/s00108-019-0625-4.
  • 2. Hawkins K.E, Duchen M., 2019. “Modelling mitochondrial dysfunction in Alzheimer’s disease using human induced pluripotent stem cells” World J Stem Cells. 11(5): 236–253.
  • 3. Saito S., Yamamoto Y., Ihara M., 2019. “Development of a Multicomponent Intervention to Prevent Alzheimer's Disease” Front Neurol. 8;10:490.
  • 4. Nonaka S., Nakanishi H., 2019. “Microglial clearance of focal apoptotic synapses” Neurosci Lett. 5:134317.
  • 5. Lane C.A., Hardy J., Schott J.M., 2018. “Alzheimer's disease” Eur J Neurol. 25(1):59-70.
  • 6. Chen X.Q., Mobley W.C. 2019. “Exploring the Pathogenesis of Alzheimer Disease in Basal For Brain Cholinergic Neurons: Converging Insights From Alternative Hypotheses” Front Neurosci. 7;13:446.
  • 7. Márquez F., Yassa M.A., 2019. “Neuroimaging Biomarkers for Alzheimer's Disease” Mol Neurodegener. 7;14(1):21.
  • 8. Herrmann N., Chau SA., Kircanski I., Lanctôt K.L., 2011. “Current and Emerging Drug Treatment Options for Alzheimer’s Disease A Systematic Review” Drugs 71 (15): 2031-2065.
  • 9. Colović M.B., Krstić D.Z., Lazarević-Pašti T.D., Bondžić A.M., Vasić V.M., 2013. “Acetylcholinesterase inhibitors: pharmacology and toxicology” Curr Neuropharmacol. 11(3):315–335
  • 10. Radic Z., Taylor P., 2001. “Peripheral Site Ligands Accelerate Inhibition of Acetylcholinesterase by Neutral Organophosphates” J. Appl. Toxicol. 21, 13–14.
  • 11. Axelsen P.H., Harel M., Silman I., Sussman J.L., 1994. “Structure and Dynamics of the active site gorge of acetylcholineesterase: synergistic use of molecular Dynamics simulation and X-ray crystallography”Protein Sci. 3(2): 188–197
  • 12. Marum, R.J.V., 2009. “Update on the use of memantine in Alzheimer’s disease”Neuropsychiatr Dis Treat. 2009; 5: 237–247.
  • 13. Wallace T.L., Porter R.H.P., 2011. “Targeting the nicotinic alpha7 acetylcholine receptor to enhance cognitionin disease” Biochemical Pharmacology 82 891–903.
  • 14. Liu Q., Kawai H., Berg D.K., 2001.“beta-Amyloid peptide blocks the response of alpha 7-containing nicotinic receptors on hippocampal neurons”Proc Natl Acad Sci USA, 98, 4734-4739
  • 15. Hashimoto K., Koike K., Shimizu E., Iyo M., 2005. “α7 Nicotinic Receptor Agonists as Potential Therapeutic Drugs for Schizophrenia” Curr. Med. Chem. – Central Nervous System Agents. 5. 171-184.
  • 16. Lao K., Ji N., Zhang X., Qiao W., Tang Z., Gou X., 2019” Drug development for Alzheimer’s disease: review” Journal of Drug Targeting, 27:2, 164-173
  • 17. Murphy MP, LeVine H 3rd., 2010. “Alzheimer's disease and the amyloid-beta peptide”. J Alzheimers Dis. 19(1):311–323.
  • 18. Bongarzone S., Savickas V., Luzi F., Gee A.D., 2017. “Targeting the Receptor for Advanced Glycation Endproducts (RAGE): A Medicinal Chemistry Perspective”. J Med Chem. 60(17):7213–7232.
  • 19. Scott J.D., Li S.W., Brunskill A.P.J., Chen X., Cox K., Cumming J.N., Forman M., Gilbert E.J., Hodgson R.A., Hyde L.A., Jiang Q., Iserloh U., Kazakevich I., Kuvelkar R., Mei H., Meredith J., Misiaszek J., Orth P., Rossiter L.M., Slater M., Stone J., Strickland C.O., Voigt J.H., Wang G., Wang H., Wu Y., Greenlee W.J., Parker E.M., Kennedy M.E., Stamford A.W., 2016. “Discovery of the 3-Imino-1,2,4-thiadiazinane 1,1-Dioxide Derivative Verubecestat (MK-8931)–A β-Site Amyloid Precursor Protein Cleaving Enzyme 1 Inhibitor for the Treatment of Alzheimer’s Disease” Journal of Medicinal Chemistry 59 (23), 10435-10450.
  • 20. Egan F.M., Kost J., Voss T., Mukai Y., Aisen P.S., Cummings J.L., Tariot P.N., Vellas B., Dyck C.H.V., Boada M., Zhang Y., Li W., Furtek C., Mahoney E., Mozley L.H., Mo Y., Sur C., Michelson D., 2019. “Randomized Trial of Verubecestat for Prodromal Alzheimer’s Disease” N Engl J Med 380:1408-20
  • 21. Olsauskas-Kuprys R, Zlobin A, Osipo C., 2013.“Gamma secretase inhibitors of Notch signaling”. Onco Targets Ther. 6:943–955.
  • 22. Strooper B.D., 2014. “ Lessons from a Failed γ-Secretase Alzheimer Trial”Cell. 159(4), 721-726
  • 23. Wolfe M.S., 2008. “Inhibition and modulation of γ-secretase for Alzheimer’s disease” Neurotherapeutics 5(3): 391–398
  • 24. Weggen S., Rogers M., Eriksen J., 2007. “NSAIDs: small molecules for prevention of Alzheimer’s disease orprecursors for future drug development?” TRENDS in Pharmacological Sciences 28(10), 536-543
  • 25. Imbimbo B.P., 2009. “Why did tarenflurbil fail in Alzheimer's disease?” J Alzheimers Dis. 17(4):757-60
  • 26. Kierdorf K., Fritz G., 2013. “RAGE regulation and signaling in inflammation and beyond”J Leukoc Biol. 94(1):55-68
  • 27. Han Y.T., Choi G.I., Son D., Kim N.J., Yun H., Lee S., Chang D.J., Hong H.S., Kim H., Ha H.J., Kim Y.H., Park H.J., Lee J., Suh Y.G., 2012.” Ligand-Based Design, Synthesis, and Biological Evaluation of 2- Aminopyrimidines, a Novel Series of Receptor for Advanced Glycation End Products (RAGE) Inhibitors “J. Med. Chem., 55 (21), 9120–9135
  • 28. Bendlin B.B., 2019. “Antidiabetic therapies and Alzheimer disease” DIALOGUESIN CLINICAL NEUROSCIENCE 21(1); 83-91
  • 29. Grundke-Iqbal I., Iqbal K.,Tung Y.C.,Quinlan M., Wisniewski H.M.,Binder L.I., 1986. “Abnormal phosphorylation of the microtubule-associated protein τ (tau) in Alzheimer cytoskeletal pathology” Proc. Natl. Acad. Sci.83, 4913-4917
  • 30. Li C., Götz J., 2017. “Tau-based therapies in neurodegeneration: opportunities and challenges” Nature Reviews Drug Discovery 16, 863–883.
  • 31. Anand K, Sabbagh M., 2015. “Early investigational drugs targeting tau protein for the treatment of Alzheimer's disease” . Expert Opin Investig Drugs 24(10):1355–1360
  • 32. Baddeley T.C., McCaffrey J., Storey J.M.D., Cheung J.K.S., Melis V., Horsley D., Harrington C.R., Wischik C.M., 2015. “Complex Disposition of Methylthioninium Redox Forms Determines Efficacy in Tau Aggregation Inhibitor Therapy for Alzheimer’s Disease” J Pharmacol Exp Ther 352:110–118
  • 33. Song GJ., Suk K., 2017. “Pharmacological Modulation of Functional Phenotypes of Microglia in Neurodegenerative Diseases”Front Aging Neurosci9: 139. doi: 10.3389/fnagi.2017.00139
  • 34. J., Michelle L., 2012. “Targeting Microglia-Mediated Neurotoxicity: The Potential of NOX2 Inhibitors” Cell Mol Life Sci. 69(14): 2409–2427
  • 35. Tanveer R., McGuinness N., Daniel S., Campbell A.G.V.A., 2012. “Cannabinoid receptors and neurodegenerative diseases” WIREs Membr Transp Signal 1:633–639.
  • 36. Cummings JL, Morstorf T, Zhong K, 2014. “Alzheimer's disease drug-development pipeline: few candidates, frequent failures”Alzheimers Res Ther. 6(4):37.
There are 36 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Makaleler
Authors

Azime Berna Özçelik 0000-0002-3160-5753

Mevlüt Akdağ This is me 0000-0002-8783-6139

Muhammed Ergün This is me 0000-0002-7231-5285

Mehtap Uysal 0000-0003-1855-3386

Publication Date August 31, 2019
Published in Issue Year 2019

Cite

APA Özçelik, A. B., Akdağ, M., Ergün, M., Uysal, M. (2019). Alzheimer Hastalığının Tedavisinde Kullanılan İlaçlar ve Yeni Yaklaşımlar. Erzincan University Journal of Science and Technology, 12(2), 1149-1159. https://doi.org/10.18185/erzifbed.591088