Research Article
BibTex RIS Cite

Experimental Investigations of Performance, Combustion and Emission Characteristics of Ethanol Fueled HCCI Engine

Year 2020, , 221 - 234, 20.03.2020
https://doi.org/10.18185/erzifbed.608559

Abstract

In
this study, Ricardo Hydra test engine which has been converted from a four
stroke, single cylinder, port injection spark ignition (SI) engine to homogeneous
charged compression ignition (HCCI) engine was used. The effect of reference
heptane and heptane / ethyl alcohol mixtures (E15 and E25) on combustion,
engine performance and exhaust emissions was investigated experimentally. The
intake air inlet temperature is fixed at
60℃ and the engine speed is determined as 800 rpm.
In-cylinder pressure, heat release, start of combustion, CA50, combustion
duration, indicated thermal efficiency, indicated mean effective pressure (IMEP)
and exhaust emission results were investigated at different lambda values. Addition
of ethyl alcohol to heptane resulted in delayed and prolonged combustion. Also
this provided to slowing of the combustion. Consequently, the pressure rise
rate decreased and HCCI combustion was controlled. The highest indicated
thermal efficiency was found to be 49% when the lambda value was 2 and use of
E15 fuel. The highest IMEP was found to be 6,1 bar when the lambda value was 1,3
and use of E25 fuel. CO and HC emissions increased simultaneously with the
addition of ethyl alcohol to the heptane fuel. Compared to heptane, when the
E15 and E25 fuels are used, it can be stated that the low in-cylinder gas
temperatures are the main reason for the high emission values. It can be stated
that E15 fuel is the ideal fuel under suitable operating conditions via this
study.

References

  • Christensen, M., Johansson, B. ve Einewall, P. 1997. “Homogeneous charge compression ignition (HCCI) using isooctane, ethanol and natural gas-a comparison with spark ignition operation”, SAE Technical Paper, No. 972874.
  • Cinar, C., Uyumaz, A., Solmaz, H., Sahin, F., Polat, S. ve Yilmaz, E. 2015. “Effects of intake air temperature on combustion, performance and emission characteristics of a HCCI engine fueled with the blends of 20% n-heptane and 80% isooctane fuels”, Fuel Processing Technology, 130, 275-281.
  • Curran, H. J., Pitz, W. J., Westbrook, C. K., Callahan, G. V. ve Dryer, F. L. 1998. “Oxidation of automotive primary reference fuels at elevated pressures”, Symposium (International) on Combustion, 27(1), 379-387.
  • Heywood, J. B. 1988. “Internal combustion engine fundamentals”, McGraw Hill.
  • Huang, H. ve Su, W. 2005. “A new reduced chemical kinetic model for autoignition and oxidation of lean n-heptane/air mixtures in HCCI engines”, SAE Technical Paper, No. 2005-01-0118.
  • Li, Y., Zhao, H. ve Brouzos, N. 2008. “CAI combustion with methanol and ethanol in an air-assisted direct injection SI engine”, SAE Technical Paper, No. 2008-01-1673.
  • Lü, X., Hou, Y., Zu, L. ve Huang, Z. 2006. “Experimental study on the auto-ignition and combustion characteristics in the homogeneous charge compression ignition (HCCI) combustion operation with ethanol/n-heptane blend fuels by port injection”, Fuel, 85(17-18), 2622-2631.
  • Maurya, R. K. ve Agarwal, A. K. 2014. “Experimental investigations of performance, combustion and emission characteristics of ethanol and methanol fueled HCCI engine”, Fuel Processing Technology, 126, 30-48.
  • Oakley, A., Zhao, H., Ladommatos, N. ve Ma, T. 2001. “Dilution effects on the controlled auto-ignition (CAI) combustion of hydrocarbon and alcohol fuels”, SAE Transactions, 2086-2099.
  • Ogawa, H., Miyamoto, N., Kaneko, N. ve Ando, H. 2003. “Combustion control and operating range expansion with direct injection of reaction suppressors in a premixed DME HCCI engine”, SAE Technical Paper, No. 2003-01-0746.
  • Peng, Z., Zhao, H. ve Ladommatos, N. 2003. “Effects of air/fuel ratios and EGR rates on HCCI combustion of n-heptane, a diesel type fuel”, SAE Technical Paper, No. 2003-01-0747.
  • Polat, S. 2016. “An experimental study on combustion, engine performance and exhaust emissions in a HCCI engine fuelled with diethyl ether-ethanol fuel blends”, Fuel Processing Technology, 143, 140-150.
  • Poulopoulos, S. G., Samaras, D. P. ve Philippopoulos, C. J. 2001. “Regulated and unregulated emissions from an internal combustion engine operating on ethanol-containing fuels”, Atmospheric Environment, 35(26), 4399-4406.
  • Saisirirat, P., Togbé, C., Chanchaona, S., Foucher, F., Mounaim-Rousselle, C. ve Dagaut, P. 2011. “Auto-ignition and combustion characteristics in HCCI and JSR using 1-butanol/n-heptane and ethanol/n-heptane blends”, Proceedings of the Combustion Institute, 33(2), 3007-3014.
  • Shibata, G., Oyama, K., Urushihara, T. ve Nakano, T. 2005. “Correlation of low temperature heat release with fuel composition and HCCI engine combustion”, SAE Technical Paper, No. 2005-01-0138.
  • Shudo, T., Shima, Y. ve Fujii, T. 2009. “Production of dimethyl ether and hydrogen by methanol reforming for an HCCI engine system with waste heat recovery–Continuous control of fuel ignitability and utilization of exhaust gas heat”, International Journal of Hydrogen Energy, 34(18), 7638-7647.
  • Tongroon, M. ve Zhao, H. 2010. “Combustion characteristics of CAI combustion with alcohol fuels”, SAE Technical Paper, No. 2010-01-0843.
  • Uyumaz, A. 2015. “An experimental investigation into combustion and performance characteristics of an HCCI gasoline engine fueled with n-heptane, isopropanol and n-butanol fuel blends at different inlet air temperatures”, Energy Conversion and Management, 98, 199-207.
  • Xie, H., Wei, Z., He, B. ve Zhao, H. 2006. “Comparison of HCCI combustion respectively fueled with gasoline, ethanol and methanol through the trapped residual gas strategy”, SAE Technical Paper, No. 2006-01-0635.
  • Yao, M., Zheng, Z. ve Liu, H. 2009. “Progress and recent trends in homogeneous charge compression ignition (HCCI) engines”, Progress in Energy and Combustion Science, 35(5), 398-437.
  • Zhang, C. ve Wu, H. 2016. “Combustion characteristics and performance of a methanol fueled homogenous charge compression ignition (HCCI) engine”, Journal of the Energy Institute, 89(3), 346-353.
  • Zhang, C. ve Wu, H. 2012. “The simulation based on CHEMKIN for homogeneous charge compression ignition combustion with on-board fuel reformation in the chamber”, International Journal of Hydrogen Energy, 37(5), 4467-4475.
  • Zhao, H. 2007. “HCCI and CAI engines for the automotive industry”, Woodhead Publishing Limited, Cambridge.
  • Zhao, F., Asmus, T. N., Assanis, D. N., Dec, J. E., Eng, J. A. ve Najt, P. M. 2003. “Homogeneous charge compression ignition (HCCI) engines”, SAE Technical Paper, No. PT-94.
  • Zheng, J., Miller, D. L., Cernansky, N. P., Liu, D., Zhao, X. ve Zhang, M. 2004. “Some observations on the effects of EGR, oxygen concentration, and engine speed on the homogeneous charge combustion of n-heptane”, SAE Technical Paper, No. 2004-01-1905.

Etil Alkol Yakıtlı HCCI Motorun Performans, Yanma ve Emisyon Özeliklerinin Deneysel Olarak İncelenmesi

Year 2020, , 221 - 234, 20.03.2020
https://doi.org/10.18185/erzifbed.608559

Abstract

Bu
çalışmada dört zamanlı, tek silindirli, port enjeksiyonlu bir benzinli motordan
(SI) homojen dolgulu sıkıştırma ile ateşlemeli motora (HCCI) dönüşümü yapılmış
Ricardo Hydra test motoru kullanılmıştır. Referans heptan ve heptan/etil alkol
karışımlarının (E15 ve E25) yanma, motor performansı ve egzoz emisyonlarına
etkisi deneysel olarak incelenmiştir. Emme havası giriş sıcaklığı 60℃’de
sabitlenmiş ve motor hızı 800 rpm olarak belirlenmiştir. Farklı hava fazlalık
katsayısı (HFK) değerlerinde silindir içi basınç, ısı dağılımı, yanma
başlangıcı, CA50, yanma süresi, indike termik verim, indike ortalama efektif
basınç (IMEP) ve egzoz emisyon sonuçları incelenmiştir. Heptan yakıtına etil
alkol ilavesi yanmanın gecikmeye alınarak uzamasına neden olmuştur. Ayrıca
yanmanın yavaşlatılması sağlanmıştır. Buna bağlı olarak basınç artış oranı
azalarak HCCI yanma kontrol altına alınmıştır. En yüksek indike termik verim
E15 yakıtı kullanımında HFK’nın 2 olduğu şartlarda %49 olarak belirlenmiştir.
En yüksek IMEP E25 yakıtı kullanımında HFK’nın 1,3 olduğu şartlarda 6,1 bar
olarak tespit edilmiştir. CO ve HC emisyonları ise heptan yakıtına etil alkol
ilave edilmesi ile eş zamanlı olarak artış göstermiştir. Karışım yakıtları
kullanımında silindir içi gaz sıcaklıklarının heptana göre düşük olması, yüksek
emisyon değerlerinin temel nedeni olduğu ifade edilebilir. E15 yakıtının uygun
çalışma şartlardında ideal yakıt olduğu bu çalışma ile ifade edilebilir.

References

  • Christensen, M., Johansson, B. ve Einewall, P. 1997. “Homogeneous charge compression ignition (HCCI) using isooctane, ethanol and natural gas-a comparison with spark ignition operation”, SAE Technical Paper, No. 972874.
  • Cinar, C., Uyumaz, A., Solmaz, H., Sahin, F., Polat, S. ve Yilmaz, E. 2015. “Effects of intake air temperature on combustion, performance and emission characteristics of a HCCI engine fueled with the blends of 20% n-heptane and 80% isooctane fuels”, Fuel Processing Technology, 130, 275-281.
  • Curran, H. J., Pitz, W. J., Westbrook, C. K., Callahan, G. V. ve Dryer, F. L. 1998. “Oxidation of automotive primary reference fuels at elevated pressures”, Symposium (International) on Combustion, 27(1), 379-387.
  • Heywood, J. B. 1988. “Internal combustion engine fundamentals”, McGraw Hill.
  • Huang, H. ve Su, W. 2005. “A new reduced chemical kinetic model for autoignition and oxidation of lean n-heptane/air mixtures in HCCI engines”, SAE Technical Paper, No. 2005-01-0118.
  • Li, Y., Zhao, H. ve Brouzos, N. 2008. “CAI combustion with methanol and ethanol in an air-assisted direct injection SI engine”, SAE Technical Paper, No. 2008-01-1673.
  • Lü, X., Hou, Y., Zu, L. ve Huang, Z. 2006. “Experimental study on the auto-ignition and combustion characteristics in the homogeneous charge compression ignition (HCCI) combustion operation with ethanol/n-heptane blend fuels by port injection”, Fuel, 85(17-18), 2622-2631.
  • Maurya, R. K. ve Agarwal, A. K. 2014. “Experimental investigations of performance, combustion and emission characteristics of ethanol and methanol fueled HCCI engine”, Fuel Processing Technology, 126, 30-48.
  • Oakley, A., Zhao, H., Ladommatos, N. ve Ma, T. 2001. “Dilution effects on the controlled auto-ignition (CAI) combustion of hydrocarbon and alcohol fuels”, SAE Transactions, 2086-2099.
  • Ogawa, H., Miyamoto, N., Kaneko, N. ve Ando, H. 2003. “Combustion control and operating range expansion with direct injection of reaction suppressors in a premixed DME HCCI engine”, SAE Technical Paper, No. 2003-01-0746.
  • Peng, Z., Zhao, H. ve Ladommatos, N. 2003. “Effects of air/fuel ratios and EGR rates on HCCI combustion of n-heptane, a diesel type fuel”, SAE Technical Paper, No. 2003-01-0747.
  • Polat, S. 2016. “An experimental study on combustion, engine performance and exhaust emissions in a HCCI engine fuelled with diethyl ether-ethanol fuel blends”, Fuel Processing Technology, 143, 140-150.
  • Poulopoulos, S. G., Samaras, D. P. ve Philippopoulos, C. J. 2001. “Regulated and unregulated emissions from an internal combustion engine operating on ethanol-containing fuels”, Atmospheric Environment, 35(26), 4399-4406.
  • Saisirirat, P., Togbé, C., Chanchaona, S., Foucher, F., Mounaim-Rousselle, C. ve Dagaut, P. 2011. “Auto-ignition and combustion characteristics in HCCI and JSR using 1-butanol/n-heptane and ethanol/n-heptane blends”, Proceedings of the Combustion Institute, 33(2), 3007-3014.
  • Shibata, G., Oyama, K., Urushihara, T. ve Nakano, T. 2005. “Correlation of low temperature heat release with fuel composition and HCCI engine combustion”, SAE Technical Paper, No. 2005-01-0138.
  • Shudo, T., Shima, Y. ve Fujii, T. 2009. “Production of dimethyl ether and hydrogen by methanol reforming for an HCCI engine system with waste heat recovery–Continuous control of fuel ignitability and utilization of exhaust gas heat”, International Journal of Hydrogen Energy, 34(18), 7638-7647.
  • Tongroon, M. ve Zhao, H. 2010. “Combustion characteristics of CAI combustion with alcohol fuels”, SAE Technical Paper, No. 2010-01-0843.
  • Uyumaz, A. 2015. “An experimental investigation into combustion and performance characteristics of an HCCI gasoline engine fueled with n-heptane, isopropanol and n-butanol fuel blends at different inlet air temperatures”, Energy Conversion and Management, 98, 199-207.
  • Xie, H., Wei, Z., He, B. ve Zhao, H. 2006. “Comparison of HCCI combustion respectively fueled with gasoline, ethanol and methanol through the trapped residual gas strategy”, SAE Technical Paper, No. 2006-01-0635.
  • Yao, M., Zheng, Z. ve Liu, H. 2009. “Progress and recent trends in homogeneous charge compression ignition (HCCI) engines”, Progress in Energy and Combustion Science, 35(5), 398-437.
  • Zhang, C. ve Wu, H. 2016. “Combustion characteristics and performance of a methanol fueled homogenous charge compression ignition (HCCI) engine”, Journal of the Energy Institute, 89(3), 346-353.
  • Zhang, C. ve Wu, H. 2012. “The simulation based on CHEMKIN for homogeneous charge compression ignition combustion with on-board fuel reformation in the chamber”, International Journal of Hydrogen Energy, 37(5), 4467-4475.
  • Zhao, H. 2007. “HCCI and CAI engines for the automotive industry”, Woodhead Publishing Limited, Cambridge.
  • Zhao, F., Asmus, T. N., Assanis, D. N., Dec, J. E., Eng, J. A. ve Najt, P. M. 2003. “Homogeneous charge compression ignition (HCCI) engines”, SAE Technical Paper, No. PT-94.
  • Zheng, J., Miller, D. L., Cernansky, N. P., Liu, D., Zhao, X. ve Zhang, M. 2004. “Some observations on the effects of EGR, oxygen concentration, and engine speed on the homogeneous charge combustion of n-heptane”, SAE Technical Paper, No. 2004-01-1905.
There are 25 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Makaleler
Authors

Alper Calam 0000-0003-4125-2127

Serdar Halis 0000-0002-6099-7223

Publication Date March 20, 2020
Published in Issue Year 2020

Cite

APA Calam, A., & Halis, S. (2020). Etil Alkol Yakıtlı HCCI Motorun Performans, Yanma ve Emisyon Özeliklerinin Deneysel Olarak İncelenmesi. Erzincan University Journal of Science and Technology, 13(1), 221-234. https://doi.org/10.18185/erzifbed.608559