Research Article
BibTex RIS Cite

Bor Katkılı TiO2 Nanotüp Fotokatalizörlerinin Üretimi ve Karakterizasyonu

Year 2020, , 962 - 971, 31.12.2020
https://doi.org/10.18185/erzifbed.637208

Abstract

TiO2 nanotüp fotokatalizörleri
titanyum levhaların anodizasyonu ile sentezlenmiştir. Sentezlenmiş olan TiO2
nanotüp fotokatalizörlerinin bor katkılaması, borik asit içeren elektrolit
içerisinde elektrokimyasal muamele ile gerçekleştirilmiştir.  Elde edilen saf ve katkılı fotokatalizörlerin
karakterizasyonu SEM-EDS, XRD ve kronoamperometri ölçümleri ile yapılmıştır. Üretilen
fotokatalizörlerin fotokatalitik aktiviteleri Orange G boyası kullanılarak gerçekleştirilmiş
ve B katkılı TiO2 nanotüp fotokatalizörünün, katkısız TiO2
fotokatalizörüne göre % 24,75 oranında daha fazla giderim gösterdiği
belirlenmiştir. 

References

  • Amy, G. L., Tan, L., & Davis, M. K. (1991). The effects of ozonation and activated carbon adsorption on trihalomethane speciation. Water Research, 25(2), 191-202. doi:https://doi.org/10.1016/0043-1354(91)90029-P
  • Chen, D., Yang, D., Wang, Q., & Jiang, Z. (2006). Effects of Boron Doping on Photocatalytic Activity and Microstructure of Titanium Dioxide Nanoparticles. Industrial & Engineering Chemistry Research, 45(12), 4110-4116. doi:10.1021/ie0600902
  • Escada, A. L., Nakazato, R. Z., & Claro, A. P. R. A. (2017). Influence of anodization parameters in the TiO2 nanotubes formation on Ti-7.5 Mo alloy surface for biomedical application. Materials Research, 20(5), 1282-1290.
  • Hassan, S. M., Ahmed, A. I., & Mannaa, M. A. (2019). Preparation and characterization of SnO2 doped TiO2 nanoparticles: Effect of phase changes on the photocatalytic and catalytic activity. Journal of Science: Advanced Materials and Devices, 4(3), 400-412. doi:https://doi.org/10.1016/j.jsamd.2019.06.004
  • He, X., Cai, Y., Zhang, H., & Liang, C. (2011). Photocatalytic degradation of organic pollutants with Ag decorated free-standing TiO2 nanotube arrays and interface electrochemical response. Journal of Materials Chemistry, 21(2), 475-480. doi:10.1039/C0JM02404J
  • Kiziltaş, H., & Tekin, T. (2017). Increasing of Photocatalytic Performance of TiO2 Nanotubes by Doping AgS and CdS. Chemical Engineering Communications, 204(8), 852-857. doi:10.1080/00986445.2017.1304387
  • Legrini, O., Oliveros, E., & Braun, A. M. (1993). Photochemical processes for water treatment. Chemical Reviews, 93(2), 671-698. doi:10.1021/cr00018a003
  • Li, J., Lu, N., Quan, X., Chen, S., & Zhao, H. (2008). Facile Method for Fabricating Boron-Doped TiO2 Nanotube Array with Enhanced Photoelectrocatalytic Properties. Industrial & Engineering Chemistry Research, 47(11), 3804-3808. doi:10.1021/ie0712028
  • Luttrell, T., Halpegamage, S., Tao, J., Kramer, A., Sutter, E., & Batzill, M. (2014). Why is anatase a better photocatalyst than rutile? - Model studies on epitaxial TiO(2) films. Scientific Reports, 4, 4043. doi:10.1038/srep04043
  • Ollis, D. F. (1985). Contaminant degradation in water. Environmental Science & Technology, 19(6), 480-484. doi:10.1021/es00136a002
  • Park, J. H., Kim, S., & Bard, A. J. (2006). Novel Carbon-Doped TiO2 Nanotube Arrays with High Aspect Ratios for Efficient Solar Water Splitting. Nano Letters, 6(1), 24-28. doi:10.1021/nl051807y
  • Peighambardoust, N.-S., Khameneh-asl, S., & Khademi, A. (2018). Fabrication of doped TiO2 nanotube array films with enhanced photo-catalytic activity. AIP Conference Proceedings, 1920(1), 020004. doi:10.1063/1.5018936
  • Shannon, R. D. (1976). Revised Effective Ionic-Radii and Systematic Studies of Interatomic Distances in Halides and Chalcogenides. Acta Crystallographica Section A, 32(Sep1), 751-767. doi:Doi 10.1107/S0567739476001551
  • Stülp, S., Cardoso, J. C., de Brito, J. F., Flor, J. B. S., Frem, R. C. G., Sayão, F. A., & Zanoni, M. V. B. (2017). An Artificial Photosynthesis System Based on Ti/TiO2 Coated with Cu(II) Aspirinate Complex for CO2 Reduction to Methanol. Electrocatalysis, 8(3), 279-287. doi:10.1007/s12678-017-0367-9
  • Szkoda, M., Siuzdak, K., Lisowska-Oleksiak, A., Karczewski, J., & Ryl, J. (2015). Facile preparation of extremely photoactive boron-doped TiO2 nanotubes arrays. Electrochemistry Communications, 60, 212-215.
  • Tang, X., & Li, D. (2008). Sulfur-Doped Highly Ordered TiO2 Nanotubular Arrays with Visible Light Response. The Journal of Physical Chemistry C, 112(14), 5405-5409. doi:10.1021/jp710468a
  • Tryk, D. A., Fujishima, A., & Honda, K. (2000). Recent topics in photoelectrochemistry: achievements and future prospects. Electrochimica Acta, 45(15), 2363-2376. doi:https://doi.org/10.1016/S0013-4686(00)00337-6
  • Wu, H., & Zhang, Z. (2011). High photoelectrochemical water splitting performance on nitrogen doped double-wall TiO2 nanotube array electrodes. International Journal of Hydrogen Energy, 36(21), 13481-13487. doi:https://doi.org/10.1016/j.ijhydene.2011.08.014
  • Yu, Y., Wu, H.-H., Zhu, B.-L., Wang, S.-R., Huang, W.-P., Wu, S.-H., & Zhang, S.-M. (2008). Preparation, characterization and photocatalytic activities of F-doped TiO 2 nanotubes. Catalysis Letters, 121(1-2), 165-171.
  • Zhang, Y., Fu, W., Yang, H., Liu, S., Sun, P., Yuan, M., . . . Li, Y. (2009). Synthesis and characterization of P-doped TiO2 nanotubes. Thin Solid Films, 518(1), 99-103. doi:https://doi.org/10.1016/j.tsf.2009.06.051
Year 2020, , 962 - 971, 31.12.2020
https://doi.org/10.18185/erzifbed.637208

Abstract

References

  • Amy, G. L., Tan, L., & Davis, M. K. (1991). The effects of ozonation and activated carbon adsorption on trihalomethane speciation. Water Research, 25(2), 191-202. doi:https://doi.org/10.1016/0043-1354(91)90029-P
  • Chen, D., Yang, D., Wang, Q., & Jiang, Z. (2006). Effects of Boron Doping on Photocatalytic Activity and Microstructure of Titanium Dioxide Nanoparticles. Industrial & Engineering Chemistry Research, 45(12), 4110-4116. doi:10.1021/ie0600902
  • Escada, A. L., Nakazato, R. Z., & Claro, A. P. R. A. (2017). Influence of anodization parameters in the TiO2 nanotubes formation on Ti-7.5 Mo alloy surface for biomedical application. Materials Research, 20(5), 1282-1290.
  • Hassan, S. M., Ahmed, A. I., & Mannaa, M. A. (2019). Preparation and characterization of SnO2 doped TiO2 nanoparticles: Effect of phase changes on the photocatalytic and catalytic activity. Journal of Science: Advanced Materials and Devices, 4(3), 400-412. doi:https://doi.org/10.1016/j.jsamd.2019.06.004
  • He, X., Cai, Y., Zhang, H., & Liang, C. (2011). Photocatalytic degradation of organic pollutants with Ag decorated free-standing TiO2 nanotube arrays and interface electrochemical response. Journal of Materials Chemistry, 21(2), 475-480. doi:10.1039/C0JM02404J
  • Kiziltaş, H., & Tekin, T. (2017). Increasing of Photocatalytic Performance of TiO2 Nanotubes by Doping AgS and CdS. Chemical Engineering Communications, 204(8), 852-857. doi:10.1080/00986445.2017.1304387
  • Legrini, O., Oliveros, E., & Braun, A. M. (1993). Photochemical processes for water treatment. Chemical Reviews, 93(2), 671-698. doi:10.1021/cr00018a003
  • Li, J., Lu, N., Quan, X., Chen, S., & Zhao, H. (2008). Facile Method for Fabricating Boron-Doped TiO2 Nanotube Array with Enhanced Photoelectrocatalytic Properties. Industrial & Engineering Chemistry Research, 47(11), 3804-3808. doi:10.1021/ie0712028
  • Luttrell, T., Halpegamage, S., Tao, J., Kramer, A., Sutter, E., & Batzill, M. (2014). Why is anatase a better photocatalyst than rutile? - Model studies on epitaxial TiO(2) films. Scientific Reports, 4, 4043. doi:10.1038/srep04043
  • Ollis, D. F. (1985). Contaminant degradation in water. Environmental Science & Technology, 19(6), 480-484. doi:10.1021/es00136a002
  • Park, J. H., Kim, S., & Bard, A. J. (2006). Novel Carbon-Doped TiO2 Nanotube Arrays with High Aspect Ratios for Efficient Solar Water Splitting. Nano Letters, 6(1), 24-28. doi:10.1021/nl051807y
  • Peighambardoust, N.-S., Khameneh-asl, S., & Khademi, A. (2018). Fabrication of doped TiO2 nanotube array films with enhanced photo-catalytic activity. AIP Conference Proceedings, 1920(1), 020004. doi:10.1063/1.5018936
  • Shannon, R. D. (1976). Revised Effective Ionic-Radii and Systematic Studies of Interatomic Distances in Halides and Chalcogenides. Acta Crystallographica Section A, 32(Sep1), 751-767. doi:Doi 10.1107/S0567739476001551
  • Stülp, S., Cardoso, J. C., de Brito, J. F., Flor, J. B. S., Frem, R. C. G., Sayão, F. A., & Zanoni, M. V. B. (2017). An Artificial Photosynthesis System Based on Ti/TiO2 Coated with Cu(II) Aspirinate Complex for CO2 Reduction to Methanol. Electrocatalysis, 8(3), 279-287. doi:10.1007/s12678-017-0367-9
  • Szkoda, M., Siuzdak, K., Lisowska-Oleksiak, A., Karczewski, J., & Ryl, J. (2015). Facile preparation of extremely photoactive boron-doped TiO2 nanotubes arrays. Electrochemistry Communications, 60, 212-215.
  • Tang, X., & Li, D. (2008). Sulfur-Doped Highly Ordered TiO2 Nanotubular Arrays with Visible Light Response. The Journal of Physical Chemistry C, 112(14), 5405-5409. doi:10.1021/jp710468a
  • Tryk, D. A., Fujishima, A., & Honda, K. (2000). Recent topics in photoelectrochemistry: achievements and future prospects. Electrochimica Acta, 45(15), 2363-2376. doi:https://doi.org/10.1016/S0013-4686(00)00337-6
  • Wu, H., & Zhang, Z. (2011). High photoelectrochemical water splitting performance on nitrogen doped double-wall TiO2 nanotube array electrodes. International Journal of Hydrogen Energy, 36(21), 13481-13487. doi:https://doi.org/10.1016/j.ijhydene.2011.08.014
  • Yu, Y., Wu, H.-H., Zhu, B.-L., Wang, S.-R., Huang, W.-P., Wu, S.-H., & Zhang, S.-M. (2008). Preparation, characterization and photocatalytic activities of F-doped TiO 2 nanotubes. Catalysis Letters, 121(1-2), 165-171.
  • Zhang, Y., Fu, W., Yang, H., Liu, S., Sun, P., Yuan, M., . . . Li, Y. (2009). Synthesis and characterization of P-doped TiO2 nanotubes. Thin Solid Films, 518(1), 99-103. doi:https://doi.org/10.1016/j.tsf.2009.06.051
There are 20 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Makaleler
Authors

Hakan Kızıltaş 0000-0003-3131-6422

Publication Date December 31, 2020
Published in Issue Year 2020

Cite

APA Kızıltaş, H. (2020). Bor Katkılı TiO2 Nanotüp Fotokatalizörlerinin Üretimi ve Karakterizasyonu. Erzincan University Journal of Science and Technology, 13(3), 962-971. https://doi.org/10.18185/erzifbed.637208