Research Article
BibTex RIS Cite

The Design of Autonomous Thermal Management System For An Internal Combustion Engine Using Fractional Order PID Controller

Year 2019, , 1640 - 1650, 31.12.2019
https://doi.org/10.18185/erzifbed.644767

Abstract

In this
study, the fractional order PID type controller is designed an independent
cooling system for internal combustion engines.
Nonlinear
optimization technique is used to determine the controller parameters in the
proposed strategy. The system is named as autonomous engine cooling system and
it provides a superior performance in terms of optimal thermal management
compared to conventional systems. Fistly, the mathematical model of engine thermal
system is derived. Next, in order to adjust cooling system electromechanical
components, the proposed control strategy is tested both steady and transient
engine operating conditions. In the steady state operating conditions, engine
output temperature tracking error is
0,0248and the tracking error is obtained 2.108
℃, in variable temperature conditions.

References

  • Allen, D. J., & Lasecki, M. P. (2001). Thermal Management Evolution and Controlled Coolant Flow. https://doi.org/10.4271/2001-01-1732
  • Bequette, B. W. (2019, September 2). Process control practice and education: Past, present and future. Computers and Chemical Engineering, Vol. 128, pp. 538–556. https://doi.org/10.1016/j.compchemeng.2019.06.011
  • Boudjehem, B., & Boudjehem, D. (2013). Fractional order controller design for desired response. Proceedings of the Institution of Mechanical Engineers. Part I: Journal of Systems and Control Engineering. https://doi.org/10.1177/0959651812456647
  • Büche, D., Stoll, P., Dornberger, R., & Koumoutsakos, P. (2002). Multiobjective evolutionary algorithm for the optimization of noisy combustion processes. IEEE Transactions on Systems, Man and Cybernetics Part C: Applications and Reviews, 32(4), 460–473. https://doi.org/10.1109/TSMCB.2002.804372
  • Castiglione, T., Pizzonia, F., & Bova, S. (2016). A Novel Cooling System Control Strategy for Internal Combustion Engines. https://doi.org/10.4271/2016-01-0226
  • Chiara, F., & Canova, M. (2013). A review of energy consumption, management, and recovery in automotive systems, with considerations of future trends. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 227(6), 914–936. https://doi.org/10.1177/0954407012471294
  • Choi, K.-W., Kim, K.-B., & Lee, K.-H. (2009). Effect of New Cooling System in a Diesel Engine on Engine Performance and Emission Characteristics. SAE International Journal of Engines, 2(1), 77–82. https://doi.org/10.4271/2009-01-0177
  • Dumlu, A., & Ayten, K. K. (2018). Bir Otonom Elektrikli Tekerlekli Sandalyenin Hesaplamalı Tork Kontrol Yöntemiyle Yörünge Kontrolünün Gerçekleştirilmesi. Erzincan Üniversitesi Fen Bilimleri Enstitüsü Dergisi. https://doi.org/10.18185/erzifbed.382359
  • Eberth, J. F., Wagner, J. R., Afshar, B. A., & Foster, R. C. (2004). Modeling and Validation of Automotive “Smart” Thermal Management System Architectures. https://doi.org/10.4271/2004-01-0048
  • Fleming, P. J., & Purshouse, R. C. (2002). Evolutionary algorithms in control systems engineering: A survey. Control Engineering Practice, 10(11), 1223–1241. https://doi.org/10.1016/S0967-0661(02)00081-3
  • Hakariya, M., Toda, T., & Sakai, M. (2017). The New Toyota Inline 4-Cylinder 2.5L Gasoline Engine. https://doi.org/10.4271/2017-01-1021
  • Jafari, S., Dunne, J. F., Langari, M., Yang, Z., Pirault, J.-P., Long, C. A., & Thalackottore Jose, J. (2016). A review of evaporative cooling system concepts for engine thermal management in motor vehicles. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 231(8), 1126–1143. https://doi.org/10.1177/0954407016674606
  • Jander, B. S., & Baar, R. (2017). Modeling Thermal Engine Behavior Using Artificial Neural Network. https://doi.org/10.4271/2017-01-0534
  • John, H. (1988). Internal combustion engine fundamentals. McGraw-Hill Science.
  • Li, H., & Chen, Y. (2008). A fractional order proportional and derivative (FOPD) controller tuning algorithm. 2008 Chinese Control and Decision Conference, 4059–4063. IEEE.
  • Özdemir, M. T., Öztürk, D., Eke, I., Çelik, V., & Lee, K. Y. (2015). Tuning of Optimal Classical and Fractional Order PID Parameters for Automatic Generation Control Based on the Bacterial Swarm Optimization. IFAC-PapersOnLine, 48(30), 501–506. https://doi.org/10.1016/j.ifacol.2015.12.429
  • Pang, H. H., & Brace, C. J. (2004). Review of engine cooling technologies for modern engines. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 218(11), 1209–1215. https://doi.org/10.1243/0954407042580110
  • Podlubny, I. (1999). Fractional-order systems and PIλDμ-controllers. IEEE Transactions on Automatic Control. https://doi.org/10.1109/9.739144
  • Postalcıoğlu, S., & Köktürk, Ç. (2019). Bilgisayar Destekli DC Motor Hız Denetimi. Erzincan Üniversitesi Fen Bilimleri Enstitüsü Dergisi. https://doi.org/10.18185/erzifbed.510259
  • Shah, P., & Agashe, S. (2016). Review of fractional PID controller. Mechatronics. https://doi.org/10.1016/j.mechatronics.2016.06.005
  • Sheng, W., & Bao, Y. (2013). Fruit fly optimization algorithm based fractional order fuzzy-PID controller for electronic throttle. Nonlinear Dynamics, 73(1–2), 611–619. https://doi.org/10.1007/s11071-013-0814-y
  • Tao, X., & Wagner, J. R. (2016). An Engine Thermal Management System Design for Military Ground Vehicle - Simultaneous Fan, Pump and Valve Control. SAE International Journal of Passenger Cars - Electronic and Electrical Systems. https://doi.org/10.4271/2016-01-0310
  • Tepljakov, A., Petlenkov, E., Belikov, J., & Finajev, J. (2013). Fractional-order controller design and digital implementation using FOMCON toolbox for MATLAB. 2013 IEEE Conference on Computer Aided Control System Design (CACSD), 340–345. IEEE.
  • Wang, T., & Wagner, J. R. (2015). A Smart Engine Cooling System - Experimental Study of Integrated Actuator Transient Behavior. https://doi.org/10.4271/2015-01-1604
  • Will, F., & Boretti, A. (2011). A New Method to Warm Up Lubricating Oil to Improve the Fuel Efficiency During Cold Start. SAE International Journal of Engines, 4(1), 175–187. https://doi.org/10.4271/2011-01-0318
  • Xu, Z., Zhang, Y., Di, H., & Shen, T. (2019). Combustion variation control strategy with thermal efficiency optimization for lean combustion in spark-ignition engines. Applied Energy. https://doi.org/10.1016/j.apenergy.2019.113329
  • Zamani, M., Karimi-Ghartemani, M., Sadati, N., & Parniani, M. (2009). Design of a fractional order PID controller for an AVR using particle swarm optimization. Control Engineering Practice, 17(12), 1380–1387. https://doi.org/10.1016/j.conengprac.2009.07.005

Kesir Dereceli PID Denetleyici Kullanarak İçten Yanmalı Motorlarda Otonom Termal Yönetim Sistemi Tasarımı

Year 2019, , 1640 - 1650, 31.12.2019
https://doi.org/10.18185/erzifbed.644767

Abstract

Bu çalışmada, kesir dereceli PID (FOPID) tipi
kontrolcülerin içten yanmalı motorlarda bağımsız soğutma sistemi için tasarımı
gerçekleştirilmiştir.  Önerilen kontrol
stratejisinde kontrolcü parametrelerinin belirlenmesinde doğrusal olamayan
optimizasyon tekniği kullanılmıştır. Otonom motor soğutma şeklinde
isimlendirilen bu sistem, geleneksel sisteme göre optimal ısı yönetimi bakımından
üstün bir performans sağlar. Tasarımda öncelikle soğutma sisteminin
matematiksel modeli elde edilmiştir. Sonrasında soğutma sistemi bileşenleri
için önerilen kontrol stratejisi hem sabit ve hem de geçici motor çalışma
koşulları için test edilmiştir. Sabit çalışma koşullarında kontolcü sayesinde
motor çıkış sıcaklığını izeleme hatası
0,0248
 ve değişken
koşullarda ise sıcaklık izleme hatası ise 2,108
 elde edilmiştir.

References

  • Allen, D. J., & Lasecki, M. P. (2001). Thermal Management Evolution and Controlled Coolant Flow. https://doi.org/10.4271/2001-01-1732
  • Bequette, B. W. (2019, September 2). Process control practice and education: Past, present and future. Computers and Chemical Engineering, Vol. 128, pp. 538–556. https://doi.org/10.1016/j.compchemeng.2019.06.011
  • Boudjehem, B., & Boudjehem, D. (2013). Fractional order controller design for desired response. Proceedings of the Institution of Mechanical Engineers. Part I: Journal of Systems and Control Engineering. https://doi.org/10.1177/0959651812456647
  • Büche, D., Stoll, P., Dornberger, R., & Koumoutsakos, P. (2002). Multiobjective evolutionary algorithm for the optimization of noisy combustion processes. IEEE Transactions on Systems, Man and Cybernetics Part C: Applications and Reviews, 32(4), 460–473. https://doi.org/10.1109/TSMCB.2002.804372
  • Castiglione, T., Pizzonia, F., & Bova, S. (2016). A Novel Cooling System Control Strategy for Internal Combustion Engines. https://doi.org/10.4271/2016-01-0226
  • Chiara, F., & Canova, M. (2013). A review of energy consumption, management, and recovery in automotive systems, with considerations of future trends. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 227(6), 914–936. https://doi.org/10.1177/0954407012471294
  • Choi, K.-W., Kim, K.-B., & Lee, K.-H. (2009). Effect of New Cooling System in a Diesel Engine on Engine Performance and Emission Characteristics. SAE International Journal of Engines, 2(1), 77–82. https://doi.org/10.4271/2009-01-0177
  • Dumlu, A., & Ayten, K. K. (2018). Bir Otonom Elektrikli Tekerlekli Sandalyenin Hesaplamalı Tork Kontrol Yöntemiyle Yörünge Kontrolünün Gerçekleştirilmesi. Erzincan Üniversitesi Fen Bilimleri Enstitüsü Dergisi. https://doi.org/10.18185/erzifbed.382359
  • Eberth, J. F., Wagner, J. R., Afshar, B. A., & Foster, R. C. (2004). Modeling and Validation of Automotive “Smart” Thermal Management System Architectures. https://doi.org/10.4271/2004-01-0048
  • Fleming, P. J., & Purshouse, R. C. (2002). Evolutionary algorithms in control systems engineering: A survey. Control Engineering Practice, 10(11), 1223–1241. https://doi.org/10.1016/S0967-0661(02)00081-3
  • Hakariya, M., Toda, T., & Sakai, M. (2017). The New Toyota Inline 4-Cylinder 2.5L Gasoline Engine. https://doi.org/10.4271/2017-01-1021
  • Jafari, S., Dunne, J. F., Langari, M., Yang, Z., Pirault, J.-P., Long, C. A., & Thalackottore Jose, J. (2016). A review of evaporative cooling system concepts for engine thermal management in motor vehicles. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 231(8), 1126–1143. https://doi.org/10.1177/0954407016674606
  • Jander, B. S., & Baar, R. (2017). Modeling Thermal Engine Behavior Using Artificial Neural Network. https://doi.org/10.4271/2017-01-0534
  • John, H. (1988). Internal combustion engine fundamentals. McGraw-Hill Science.
  • Li, H., & Chen, Y. (2008). A fractional order proportional and derivative (FOPD) controller tuning algorithm. 2008 Chinese Control and Decision Conference, 4059–4063. IEEE.
  • Özdemir, M. T., Öztürk, D., Eke, I., Çelik, V., & Lee, K. Y. (2015). Tuning of Optimal Classical and Fractional Order PID Parameters for Automatic Generation Control Based on the Bacterial Swarm Optimization. IFAC-PapersOnLine, 48(30), 501–506. https://doi.org/10.1016/j.ifacol.2015.12.429
  • Pang, H. H., & Brace, C. J. (2004). Review of engine cooling technologies for modern engines. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 218(11), 1209–1215. https://doi.org/10.1243/0954407042580110
  • Podlubny, I. (1999). Fractional-order systems and PIλDμ-controllers. IEEE Transactions on Automatic Control. https://doi.org/10.1109/9.739144
  • Postalcıoğlu, S., & Köktürk, Ç. (2019). Bilgisayar Destekli DC Motor Hız Denetimi. Erzincan Üniversitesi Fen Bilimleri Enstitüsü Dergisi. https://doi.org/10.18185/erzifbed.510259
  • Shah, P., & Agashe, S. (2016). Review of fractional PID controller. Mechatronics. https://doi.org/10.1016/j.mechatronics.2016.06.005
  • Sheng, W., & Bao, Y. (2013). Fruit fly optimization algorithm based fractional order fuzzy-PID controller for electronic throttle. Nonlinear Dynamics, 73(1–2), 611–619. https://doi.org/10.1007/s11071-013-0814-y
  • Tao, X., & Wagner, J. R. (2016). An Engine Thermal Management System Design for Military Ground Vehicle - Simultaneous Fan, Pump and Valve Control. SAE International Journal of Passenger Cars - Electronic and Electrical Systems. https://doi.org/10.4271/2016-01-0310
  • Tepljakov, A., Petlenkov, E., Belikov, J., & Finajev, J. (2013). Fractional-order controller design and digital implementation using FOMCON toolbox for MATLAB. 2013 IEEE Conference on Computer Aided Control System Design (CACSD), 340–345. IEEE.
  • Wang, T., & Wagner, J. R. (2015). A Smart Engine Cooling System - Experimental Study of Integrated Actuator Transient Behavior. https://doi.org/10.4271/2015-01-1604
  • Will, F., & Boretti, A. (2011). A New Method to Warm Up Lubricating Oil to Improve the Fuel Efficiency During Cold Start. SAE International Journal of Engines, 4(1), 175–187. https://doi.org/10.4271/2011-01-0318
  • Xu, Z., Zhang, Y., Di, H., & Shen, T. (2019). Combustion variation control strategy with thermal efficiency optimization for lean combustion in spark-ignition engines. Applied Energy. https://doi.org/10.1016/j.apenergy.2019.113329
  • Zamani, M., Karimi-Ghartemani, M., Sadati, N., & Parniani, M. (2009). Design of a fractional order PID controller for an AVR using particle swarm optimization. Control Engineering Practice, 17(12), 1380–1387. https://doi.org/10.1016/j.conengprac.2009.07.005
There are 27 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Makaleler
Authors

Ali Rıza Kaleli 0000-0002-3234-5922

Publication Date December 31, 2019
Published in Issue Year 2019

Cite

APA Kaleli, A. R. (2019). Kesir Dereceli PID Denetleyici Kullanarak İçten Yanmalı Motorlarda Otonom Termal Yönetim Sistemi Tasarımı. Erzincan University Journal of Science and Technology, 12(3), 1640-1650. https://doi.org/10.18185/erzifbed.644767