Doç. Dr. Birol GÜNDÜZ’ün Hayatı ve Bilim Dünyasına Katkıları (1986-2019)
Year 2020,
, 1 - 6, 28.02.2020
Sezgin Akbulut
Abstract
Birol Gündüz'ün ardında kalanlar
References
- Eserleri
- Uluslararası hakemli dergilerde yayımlanan makaleler:
- 1. Gündüz Birol, Aydoğdu Ebru, Aygün Halis (2019). Fixed points of Multivalued Nonexpansive mappings in Kohlenbach Hyperbolic Space. Journal of Computational Analysis and Applications, 26(3), 509-519.
2. Alagöz Osman, Gündüz Birol, Akbulut Sezgin (2019). Fixed Point of Continuous Mappings Defined on an Arbitrary Interval, Miskolc Mathematical Notes, Vol.20 (2019), No. 2, pp. 719-728.
3. Gündüz Birol, Alagöz Osman, Akbulut Sezgin (2018). Convergence Theorems of a Faster Iteration Process Including Multivalued Mappings with Analytical and Numerical Examples. Filomat, 32(16), 5665-5677.
4. Gündüz Birol, Karahan İbrahim (2018). Convergence of SP iterative scheme for three multivalued mappings in hyperbolic space. Journal of Computational Analysis and Applications, 25(5), 815-827.
5. Gündüz Birol, Akbulut Sezgin (2018). A One-Step-Two-Mappings Iterative Scheme for Multi-Valued Maps in W-Hyperbolic Spaces. Filomat, 32(4), 1403-1411.
6. Gündüz Birol (2018). An implicit iteration process for I-nonexpansive mappings in Kohlenbach hyperbolic spaces. Palestine Journal of Mathematics, 7(2), 512-520.
7. Gündüz Birol (2018). A convergence theorem in generalized convex cone metric spaces. Communications Faculty of Sciences University of Ankara Series A1: Mathematics and Statistics, 67(2), 147-155., Doi: 10.1501/Commua1_0000000869
8. Alagöz Osman, Gündüz Birol, Akbulut Sezgin (2018). Numerical Reckoning Fixed Points for Berinde Mappings via a Faster Iteration Process. Facta Universitatis, Series: Mathematics and Informatics, 33(2), 295-305.
9. Gündüz Birol, Dutta Hemen, Kılıçman Adem (2018). Fixed point of nonself total asymptotically nonexpansive mappings in Banach spaces. Applied Sciences, 20, 102-116.
10. Gündüz Birol, Akbulut Sezgin (2017). Common fixed points of a finite family of I asymptotically nonexpansive mappings by S iteration process in Banach spaces. Thai Journal of Mathematics, 15(3), 673-687.
11. Gündüz Birol, Akbulut Sezgin (2017). Convergence theorems for a finite family of I-asymptotically nonexpansive mappings in Banach spaces. Chiang Mai Journal of Science, 44(3), 1144-1153.
12. Gündüz Birol, Dutta Hemen (2017). On the convergence of an iteration process for nonself totally asymptotically I-quasi-nonexpansive mappings. Proceedings of the Jangjeon Mathematical Society, 20(3), 377-389.
13. Gündüz Birol (2017). A new two step iterative scheme for a finite family of nonself I-asymptotically nonexpansive mappings in Banach space. New Trends in Mathematical Science, 2(5), 16-28., Doi: 10.20852/ntmsci.2017.151
14. Gündüz Birol (2017). Fixed points of a finite family of I-asymptotically quasi-nonexpansive mappings in a convex metric space. Filomat, 31(7), 2175-2182., Doi: 10.2298/FIL1707175G
15. Gündüz Birol (2017). Convergence of a new multistep iteration in convex cone metric spaces. Communications of the Korean Mathematical Society, 32(1), 39-46., Doi: 10.4134/CKMS.c160005
16. Gündüz Birol, Akbulut Sezgin (2016). On the convergence of an iteration process for totally asymptotically I-nonexpansive mappings. Journal of Nonlinear Analysis and Optimization. Theory and Applications, 7(1), 17-30.
17. Gündüz Birol (2016). A new multistep iteration for a finite family of asymptotically quasi nonexpansive mappings in convex metric spaces. Journal of Nonlinear Science and Applications, 8, 1365-1372. (Yayın No: 1807786)
18. Gündüz Birol, Akbulut Sezgin (2016). A one-step implicit iterative process for a finite family of I-nonexpansive mappings in Kohlenbach hyperbolic spaces. Mathematical Sciences, 10(1-2), 55-61., Doi: 10.1007/s40096-016-0178-9
19. Alagöz Osman, Gündüz Birol, Akbulut Sezgin (2016). Convergence theorems for a family of multivalued nonexpansive mappings in hyperbolic spaces. Open Mathematics, 14(1), 1065-1073., Doi: 10.1515/math-2016-0095
20. Safer Hussain Khan, Gündüz Birol, Akbulut Sezgin (2015). Solving nonlinear strongly accretive operator equations by a one step two mappings iterative scheme. Journal of Nonlinear Science and Applications, 8, 837-846. (Yayın No: 1650742)
21. Gündüz Birol, Akbulut Sezgin (2015). Convergence theorems of a new three step iteration for nonself asymptotically nonexpansive mappings. Thai Journal of Mathematics, 13(2), 465-480.
22. Gündüz Birol, Akbulut Sezgin (2015). On weak and strong convergence theorems for a finite family of nonself I asymptotically nonexpansive mappings. Mathematica Moravica, 19(2), 49-64.
23. Akbulut Sezgin, Gündüz Birol (2015). Strong and convergence of a faster iteration process in hyperbolic space. Communications of the Korean Mathematical Society, 30(3), 209-219., Doi: 10.4134/CKMS.2015.30.3.209
24. Gündüz Birol, Safeer Hussain Khan, Akbulut Sezgin (2015). Common fixed points of two finite families of nonexpansive mappings in Kohlenbach hyperbolic spaces. Journal of nonlinear functional analysis, 15, 1-13.
25. Gündüz Birol, Safeer Hussain Khan, Akbulut Sezgin (2014). On convergence of an implicit iterative algorithm for nonself asymptotically nonexpansive mappings. Hacettepe Journal of Mathematics and Statistics, 43(3), 399-411.
26. Gündüz Birol, Akbulut Sezgin (2013). Strong and convergence theorems in hyperbolic spaces. Miskolc Mathematical Notes, 14(3), 915-925.
27. Gündüz Birol, Akbulut Sezgin (2013). Strong convergence of an explicit iteration process for a finite family of asymptotically quasi nonexpansive mappıngs in convex metrıc spaces. Miskolc Mathematical Notes, 14(3), 905-913.
- Ulusal ve Uluslararası bilimsel toplantılarda sunulan bildiriler :
28. Gündüz Birol, Solmaz Fatma, Alagöz Osman, Akbulut Sezgin (2018). On the Approximation of Fixed Points of Multivalued Nonexpansive Mappings. International Conference on Mathematical Advances and its Applications.
29. Alagöz Osman, Gündüz Birol, Akbulut Sezgin (2018). Comparing Convergence Rate of M-Iteration with Some Faster İteration Processes. International Conference on Mathematical Advances and its Applications.
30. Karahan İbrahim, Gündüz Birol (2017). On convergence of SP iteration scheme in hyperbolic space. International Conferencein Functional Analysis dedicated to the 125th anniversary of Stefan Banach.
31. Alagöz Osman, Gündüz Birol, Akbulut Sezgin (2017). Fixed point of continuous mappings defined on an arbitrary interval. Caucasian Mathematics Conference CMC II.
32. Gündüz Birol, Alagöz Osman, Akbulut Sezgin (2017). Convergence Theorems of a Faster Iteration Process Including Multivalued Mappings with Analytical and Numerical Examples. International Conference on Mathematics and Engineering.
33. Alagöz Osman, Gündüz Birol, Akbulut Sezgin (2017). Convergence Theorems for a Faster Iteration Process for Suzuki’s Generalized Nonexpansive Mapping With Numerical Examples. International Conference on Mathematics and Engineering.
34. Gündüz Birol (2017). A New Iteration Process for Multivalued Nonexpansive Mappings in Banach Spaces. 2nd International Conference on Advances in Natural and Applied Sciences.
35. Alagöz Osman, Gündüz Birol, Akbulut Sezgin (2016). Convergence Theorems for a Family of Multivalued Mappings in Hyperbolic Spaces. International Conference on Analysis and its Applications.
36. Gündüz Birol, Okumuş İsrafil (2015). A New Iteration Scheme for Asymptotically Quasi nonexpansive Mappings In Convex Metric Spaces. International Conference on Advancements in Mathematical Sciences.
37. Gündüz Birol, Türkmen Eşref, Akbulut Sezgin (2015). Convergence of Picard Mann Hybrid Iterative Process in Hyperbolic Spaces. International Conference on Advancements in Mathematical Sciences.
38. Gündüz Birol, Alagöz Osman, Akbulut Sezgin (2018). Küme Değerli Dönüşümler için İterasyonların Yakınsama Hızları. 31. Ulusal Matematik Sempozyumu.
39. Alagöz Osman, Gündüz Birol, Akbulut Sezgin (2016). Modüler Fonksiyon Uzaylarında Küme Değerli Dönüşümlerin Sabit Noktaları. 10. Ankara Matematik Günleri.
40. Gündüz Birol, Akbulut Sezgin (2013). Konveks metrik uzaylarda I asimptotik quasi genişlemeyen dönüşümlerin sonlu bir ailesi için hatalı Ishikawa iterasyonunun yakınsaması. 7. Ankara Matematik Günleri.