Research Article
BibTex RIS Cite

Design And Manufacture Of Continuous Automatic 3D Printing Device With Conveyor System By İmage Processing Technology

Year 2020, , 392 - 403, 31.08.2020
https://doi.org/10.18185/erzifbed.666424

Abstract

In parallel with the technological developments, especially manufacturing and automation, many areas are experiencing new developments in the all world. These revolutionary technological developments are mentioned with different names (4th industrial revolution, digital transformation, etc.) and new inventions are present under different disciplines. Among all these developments, the most important advancements are the field of manufacturing. In recent years, 3D printing technologies can be said to have noteworthy studies in many countries. 3D printing technologies make it easy to manufacture complex parts. Although 3D printing is a new technology, it has been rapidly spreading in many other sectors, especially in education. However, these devices have a significant disadvantage. 3D printing technologies depend on a user. After the manufactured part, the parts need to be removed from the manufacture table for a new manufacturing. This prevents 3D printing technologies from becoming a mass production tool. In this study, design and manufacturing of the continuous automatic 3D printing device based on image processing method with the conveyor system will be performed. Also, the error rate of the surface quality of the samples was determined by the image processing method. Due to the ability to print continuously without user intervention, it will be increased the capacity and the functionality of the manufacture volume of 3D printing technologies.

References

  • Akpek A. “Triküspit Kalp Kapakçıklarının Üç Boyutlu (3B) Biyobaskı Metotları ile Fabrikasyonu”. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 22(2), 740-745, 2017.
  • Armillotta A, Bonhoeffer P, Dubini G, Ferragina S, Migliavacca F, Sala G, Schievano S. “Use of rapid prototyping models in the planning of percutaneous pulmonary valved stent implantation”. Proceedings of the Institution of Mechanical Engineers Part H: Journal of Engineering in Medicine, 221(4), 407-416, 2007.
  • Ashby M, Johnson K. Materials and Design, 2nd ed. London, England, Elsevier, 2002
  • Aydın L, Küçük S. “Üç boyutlu yazıcı ve tarayıcı ile hastaya özel medikal ortez tasarımı ve geliştirilmesi”. Politeknik Dergisi, 20(1), 1-8, 2017.
  • Bellaire G, Talmi K, Oezguer E, Koschan A. “Object Recognition: Obtaining 2-D Reconstructions from Color Edges”. Proceedings IEEE Symposium on Image Analysis and Interpretation, Tuscon, USA, 5-7 April 1998.
  • Boland T, Xu T, Damon B, Cui X. “Application of inkjet printing to tissue engineering”. Biotechnology Journal: Healthcare Nutrition Technology, 1(9), 910-917, 2006.
  • Burns M. Rapid Prototyping System Selection & Implementation Guide. 1nd ed. Boston, USA, Managent Rountable, 1991.
  • Custompartnet. “Fused Deposition Modeling”. http://www.custompartnet.com/wu/fused-deposition-modeling (02.09.2018).
  • Çelik İ, Karakoç F, Çakır MC, Duysak A. “Hızlı Prototipleme Teknolojileri Ve Uygulama Alanları”. Dumlupınar Üniversitesi Fen Bilim Enstitüsü Dergisi, 31(1), 53-70, 2013.
  • Çelik İ, Karakoç F, Çakır MK, Duysak A. “Rapid prototypıng technologıes and applıcatıon areas”. Dumlupınar Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 31(1), 53-70, 2013.
  • Demir K, Demir EBK, Çaka C, Tuğtekin U, İslamoğlu H, Kuzu A. “Üç boyutlu yazdırma teknolojilerinin eğitim alanında kullanımı: Türkiye’deki uygulamalar”. Ege Eğitim Dergisi, 17(2), 481-503, 2016.
  • Doğuş Kalıp, “Konveyor Ekipmanları”. https://www.doguskalip.com.tr/Urunler/konveyor-ekipmanlari/13 (01.03 2019).
  • Durgun İ, Başaran D. "FDM Katmanlı Üretim Teknolojisinin Araç Geliştirme Sürecindeki Uygulamaları”. 5. Otomotiv Teknolojileri Kongresi, Bursa, Türkiye, 07-08 Haziran 2010.
  • Erkut N. "A short history and applications of 3D printing technologies in Turkey". US-TURKEY Workshop On Rapid Technologies, 24(1), 23-30, 2009.
  • Faes M, Vogeler F, Coppens K, Valkenaers H, Abbeloos W, Goedeme T, Ferraris E. “Process Monitoring of Extrusion Based 3D Printing via Laser Scanning”. International Conference on Polymers and Moulds Innovations, Guimarães, Portugal, 10-12 September 2014.
  • Gezer H. “Üretim Alanında Tekstil Ve Mimari Arasındaki Etkileşim”. İstanbul Ticaret Üniversitesi Fen Bilimleri Dergisi, 7(13), 21-49, 2008. Github, “Diffimg Kütüphanesi”. https://github.com/nicolashahn/diffimg (04.02.2019)
  • Gonzalez RC, Woods RE. Digital image processing. 2nd ed. Beijing, China, Publishing House of Electronics Industry, 2002.
  • Hackaday, “Automatic 3D Printer”. https://hackaday.io/project/114738-automatic-infinite-3d-printer (16.02 2019).
  • Jähne B. Digital Image Processing. 6nd ed. Berlin, Germany, Springer, 2005.
  • Lille M, Nurmela A, Nordlund E, Metsä-Kortelainen S, Sozer N. “Applicability of protein and fiber-rich food materials in extrusion-based 3D printing”. Journal of Food Engineering, 220(1), 20-27, 2018.
  • Lin CH, Qiu ZH, Yeh CC. “Image processing for rear foot image evaluating leg and foot angles”. Measurement, 126(1), 168–183, 2018.
  • Maden H, Kamber ÖŞ. “FDM teknoloji ile üretilen prototip parçalarinin hatalari ve hatalarin önlenmesi”. International journal of 3D printing technologies and digital industry, 2(1), 40–51, 2018.
  • Ma Z, Tavares JM, Jorge N. “A review on the current segmentation algorithms for medical images”. In Proceedings of the 1st International Conference on Imaging Theory and Applications (IMAGAPP), Lisbon, Portugal, 5-8 February 2009.
  • McGurk M, Amis A, Potamianos P, Goodger N. “Rapid prototyping techniques for anatomical modelling in medicine”. Annals of the Royal College of Surgeons of England, 79(3), 169–174, 1997.
  • Neuman MRHD, Sapirstein Shwedyk E, Bushuk W. “Wheat grain colour analysis by digital image processing”. Journal of Cereal Science,10(3), 183-188, 1989.
  • Novak JI. “Re-Educating the Educators: Collaborative 3D Printing Education”. In Interdisciplinary and International Perspectives on 3D Printing in Education, DOI Number: 10.4018/978-1-5225-7018-9.ch002, 2019.
  • Özuğur B. Hızlı prototipleme teknikleri ile kompleks yapıdaki parçaların üretilebilirliklerinin araştırılması. Yüksek Lisans Tezi, Gazi Üniversitesi, Ankara, Türkiye, 2006. Rengier F, Mehndiratta A, Von Tengg-Kobligk H, Zechmann CM, Unterhinninghofen R, Kauczor HU, Giesel FL. “3D printing based on imaging data: review of medical applications”. International journal of computer assisted radiology and surgery, 5(4), 335-341, 2010.
  • Russ JC. The image processing handbook. 6nd ed. New York, USA, CRC Press, 2016.
  • Samtaş G, Gülesin M. “Sayisal görüntü i̇şleme ve farkli alanlardaki̇ uygulamalari”. EJOVOC (Electronic Journal of Vocational Colleges), 2(1), 85–97, 2011.
  • Singare S, Yaxiong L, Dichen L, Bingheng L, Sanhu H, Gang L. “Fabrication of customised maxillofacial prosthesis using computer-aided design and rapid prototyping techniques”. Rapid prototyping journal, 12(4), 206-213, 2006.
  • Stratasys. “F900 & F900 PRO 3D Printers for Large Build Manufacturing”. https://www.stratasys.com/3d-printers/stratasys-f900 (11.11 2018).
  • Thomas D. “Developing enhanced carbon nanotube reinforced composites for full-scale 3D printed components”. Reinforced Plastics, 62(4), 212-215, 2018.
  • Thomas DJ. “Developing nanocomposite 3D printing filaments for enhanced integrated device fabrication”. The International Journal of Advanced Manufacturing Technology, 95(9-12), 4191-4198, 2018.
  • Von Tengg-Kobligk, Weber T, Rengier F, Kotelis D, Geisbusch P, Bockler D, Schumacher H, Ley S. “Imaging modalities for the thoracic aorta”. Journal of cardiovascular surgery, 49(4), 429-447, 2008.
  • Wohlers T. “Wohlers report 2012 Executive summary”. Wohlers Associates Inc, Colorado, USA, 287, 2012.

Görüntü Işleme Tekniklerine Dayalı Konveyör Sistemli Sürekli Yazabilen Otomatik 3B Baskı Cihazın Tasarımı ve İmalatı

Year 2020, , 392 - 403, 31.08.2020
https://doi.org/10.18185/erzifbed.666424

Abstract

Teknolojinin ilerlemesine paralel olarak tüm dünyada başta imalat ve otomasyon olmak üzere birçok alan yeni gelişmeleri yaşamaktadır. Yaşanan bu devrimsel teknolojik gelişmeler farklı isimlerle (4. endüstri devrimi, dijital dönüşüm vb.) anılmakta olup, farklı disiplinler altında yeni buluşlar ortaya konulmaktadır. Tüm bu gelişmeler arasında en önemli sayılabilecek olanı imalat alanında yaşanan gelişmelerdir. Son yıllarda 3B baskı teknolojileri birçok ülkede kayda değer çalışmaların olduğu söylenebilir. 3B baskı teknolojileri, karmaşık parçaların üretmesini kolayca sağlamaktadır. 3B baskı yeni gelişen bir teknoloji olmasına rağmen başta eğitim olmak üzere diğer birçok sektörde hızla yaygınlaşmıştır. Bununla birlikte, bu makinelerin önemli bir dezavantajı vardır. 3 boyutlu baskı teknolojileri bir kullanıcıya bağlıdır. İmal edilmiş parçadan sonra yeni bir imalat için tabla üzerinden parçaların çıkarılması ihtiyacı vardır. Bu durum 3B baskı teknolojilerin seri üretim aracı olmalarını engeller. Bu çalışmada, günümüzde kullanılan 3B baskı cihazlarından farklı olarak sürekli yazabilen konveyör sistemli otomatik 3 boyutlu baskı cihaz tasarımı ve imalatı gerçekleşecektir. Kullanıcı müdahalesi olmadan sürekli baskı yapabilme yeteneği sayesinde, 3B baskı teknolojilerin imalat hacmi işlevselliğini ve kapasitesi arttırılmış olacaktır.

References

  • Akpek A. “Triküspit Kalp Kapakçıklarının Üç Boyutlu (3B) Biyobaskı Metotları ile Fabrikasyonu”. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 22(2), 740-745, 2017.
  • Armillotta A, Bonhoeffer P, Dubini G, Ferragina S, Migliavacca F, Sala G, Schievano S. “Use of rapid prototyping models in the planning of percutaneous pulmonary valved stent implantation”. Proceedings of the Institution of Mechanical Engineers Part H: Journal of Engineering in Medicine, 221(4), 407-416, 2007.
  • Ashby M, Johnson K. Materials and Design, 2nd ed. London, England, Elsevier, 2002
  • Aydın L, Küçük S. “Üç boyutlu yazıcı ve tarayıcı ile hastaya özel medikal ortez tasarımı ve geliştirilmesi”. Politeknik Dergisi, 20(1), 1-8, 2017.
  • Bellaire G, Talmi K, Oezguer E, Koschan A. “Object Recognition: Obtaining 2-D Reconstructions from Color Edges”. Proceedings IEEE Symposium on Image Analysis and Interpretation, Tuscon, USA, 5-7 April 1998.
  • Boland T, Xu T, Damon B, Cui X. “Application of inkjet printing to tissue engineering”. Biotechnology Journal: Healthcare Nutrition Technology, 1(9), 910-917, 2006.
  • Burns M. Rapid Prototyping System Selection & Implementation Guide. 1nd ed. Boston, USA, Managent Rountable, 1991.
  • Custompartnet. “Fused Deposition Modeling”. http://www.custompartnet.com/wu/fused-deposition-modeling (02.09.2018).
  • Çelik İ, Karakoç F, Çakır MC, Duysak A. “Hızlı Prototipleme Teknolojileri Ve Uygulama Alanları”. Dumlupınar Üniversitesi Fen Bilim Enstitüsü Dergisi, 31(1), 53-70, 2013.
  • Çelik İ, Karakoç F, Çakır MK, Duysak A. “Rapid prototypıng technologıes and applıcatıon areas”. Dumlupınar Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 31(1), 53-70, 2013.
  • Demir K, Demir EBK, Çaka C, Tuğtekin U, İslamoğlu H, Kuzu A. “Üç boyutlu yazdırma teknolojilerinin eğitim alanında kullanımı: Türkiye’deki uygulamalar”. Ege Eğitim Dergisi, 17(2), 481-503, 2016.
  • Doğuş Kalıp, “Konveyor Ekipmanları”. https://www.doguskalip.com.tr/Urunler/konveyor-ekipmanlari/13 (01.03 2019).
  • Durgun İ, Başaran D. "FDM Katmanlı Üretim Teknolojisinin Araç Geliştirme Sürecindeki Uygulamaları”. 5. Otomotiv Teknolojileri Kongresi, Bursa, Türkiye, 07-08 Haziran 2010.
  • Erkut N. "A short history and applications of 3D printing technologies in Turkey". US-TURKEY Workshop On Rapid Technologies, 24(1), 23-30, 2009.
  • Faes M, Vogeler F, Coppens K, Valkenaers H, Abbeloos W, Goedeme T, Ferraris E. “Process Monitoring of Extrusion Based 3D Printing via Laser Scanning”. International Conference on Polymers and Moulds Innovations, Guimarães, Portugal, 10-12 September 2014.
  • Gezer H. “Üretim Alanında Tekstil Ve Mimari Arasındaki Etkileşim”. İstanbul Ticaret Üniversitesi Fen Bilimleri Dergisi, 7(13), 21-49, 2008. Github, “Diffimg Kütüphanesi”. https://github.com/nicolashahn/diffimg (04.02.2019)
  • Gonzalez RC, Woods RE. Digital image processing. 2nd ed. Beijing, China, Publishing House of Electronics Industry, 2002.
  • Hackaday, “Automatic 3D Printer”. https://hackaday.io/project/114738-automatic-infinite-3d-printer (16.02 2019).
  • Jähne B. Digital Image Processing. 6nd ed. Berlin, Germany, Springer, 2005.
  • Lille M, Nurmela A, Nordlund E, Metsä-Kortelainen S, Sozer N. “Applicability of protein and fiber-rich food materials in extrusion-based 3D printing”. Journal of Food Engineering, 220(1), 20-27, 2018.
  • Lin CH, Qiu ZH, Yeh CC. “Image processing for rear foot image evaluating leg and foot angles”. Measurement, 126(1), 168–183, 2018.
  • Maden H, Kamber ÖŞ. “FDM teknoloji ile üretilen prototip parçalarinin hatalari ve hatalarin önlenmesi”. International journal of 3D printing technologies and digital industry, 2(1), 40–51, 2018.
  • Ma Z, Tavares JM, Jorge N. “A review on the current segmentation algorithms for medical images”. In Proceedings of the 1st International Conference on Imaging Theory and Applications (IMAGAPP), Lisbon, Portugal, 5-8 February 2009.
  • McGurk M, Amis A, Potamianos P, Goodger N. “Rapid prototyping techniques for anatomical modelling in medicine”. Annals of the Royal College of Surgeons of England, 79(3), 169–174, 1997.
  • Neuman MRHD, Sapirstein Shwedyk E, Bushuk W. “Wheat grain colour analysis by digital image processing”. Journal of Cereal Science,10(3), 183-188, 1989.
  • Novak JI. “Re-Educating the Educators: Collaborative 3D Printing Education”. In Interdisciplinary and International Perspectives on 3D Printing in Education, DOI Number: 10.4018/978-1-5225-7018-9.ch002, 2019.
  • Özuğur B. Hızlı prototipleme teknikleri ile kompleks yapıdaki parçaların üretilebilirliklerinin araştırılması. Yüksek Lisans Tezi, Gazi Üniversitesi, Ankara, Türkiye, 2006. Rengier F, Mehndiratta A, Von Tengg-Kobligk H, Zechmann CM, Unterhinninghofen R, Kauczor HU, Giesel FL. “3D printing based on imaging data: review of medical applications”. International journal of computer assisted radiology and surgery, 5(4), 335-341, 2010.
  • Russ JC. The image processing handbook. 6nd ed. New York, USA, CRC Press, 2016.
  • Samtaş G, Gülesin M. “Sayisal görüntü i̇şleme ve farkli alanlardaki̇ uygulamalari”. EJOVOC (Electronic Journal of Vocational Colleges), 2(1), 85–97, 2011.
  • Singare S, Yaxiong L, Dichen L, Bingheng L, Sanhu H, Gang L. “Fabrication of customised maxillofacial prosthesis using computer-aided design and rapid prototyping techniques”. Rapid prototyping journal, 12(4), 206-213, 2006.
  • Stratasys. “F900 & F900 PRO 3D Printers for Large Build Manufacturing”. https://www.stratasys.com/3d-printers/stratasys-f900 (11.11 2018).
  • Thomas D. “Developing enhanced carbon nanotube reinforced composites for full-scale 3D printed components”. Reinforced Plastics, 62(4), 212-215, 2018.
  • Thomas DJ. “Developing nanocomposite 3D printing filaments for enhanced integrated device fabrication”. The International Journal of Advanced Manufacturing Technology, 95(9-12), 4191-4198, 2018.
  • Von Tengg-Kobligk, Weber T, Rengier F, Kotelis D, Geisbusch P, Bockler D, Schumacher H, Ley S. “Imaging modalities for the thoracic aorta”. Journal of cardiovascular surgery, 49(4), 429-447, 2008.
  • Wohlers T. “Wohlers report 2012 Executive summary”. Wohlers Associates Inc, Colorado, USA, 287, 2012.
There are 35 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Makaleler
Authors

Koray Özsoy

Bekir Aksoy 0000-0001-8052-9411

Mehmet Yücel 0000-0002-4100-5831

Publication Date August 31, 2020
Published in Issue Year 2020

Cite

APA Özsoy, K., Aksoy, B., & Yücel, M. (2020). Design And Manufacture Of Continuous Automatic 3D Printing Device With Conveyor System By İmage Processing Technology. Erzincan University Journal of Science and Technology, 13(2), 392-403. https://doi.org/10.18185/erzifbed.666424