Research Article
BibTex RIS Cite

Burgers Denkleminin Sayısal Çözümleri için Logaritmik Sonlu Fark Yöntemleri

Year 2020, , 984 - 994, 31.12.2020
https://doi.org/10.18185/erzifbed.688390

Abstract

Bu çalışmada, Burgers denkleminin sayısal çözümlerini elde etmek için kapalı ve tamamen-kapalı logaritmik sonlu fark şemaları kullanılmıştır. Yöntemlerin performansını test etmek için iki model problem kullanılmıştır. Tam çözümlerin ve diğer birkaç yöntemle elde edilen sayısal çözümlerin karşılaştırılması tablolarla sunulmaktadır. Sonuçların doğruluğunu göstermek için L_(2) ve L-(sonsuz) hata normları kullanılmıştır.

References

  • Aksan, E. N., Özdeş, A. 2004. “A numerical solution of Burgers’ equation”, Applied Mathematics and Computation, 156, 395-402.
  • Aksan, E. N. 2005. “A numerical solution of Burgers’ equationby finite element method constructed on the method of discretization in time”, Applied Mathematics and Computation, 170, 895-904.
  • Bateman, H. 1915. “Some recent researches in motion of fluids”, Monthly Weather Review, 43, 163-170.
  • Burgers, J. M. 1939. “Mathematical examples illustrating relations occuring in the theory of turbulent fluid motion”, Transactions of the Royal Netherlands Academy of Science (Amsterdam), 17, 1-153.
  • Çelikten, G., Göksu, A. & Yagub, G. 2017. “Explicit Logarithmic Finite Difference Schemes For Numerical Solution of Burgers Equation”, European International Journal of Science and Technology, 6(5), 57-67.
  • Gülsu, M., Öziş, T. 2005. “Numerical solution of Burgers’ equation with restrictive Taylor Approximation”, Applied Mathematics and Computation, 171, 1192-1200.
  • Gülsu, M. 2006. “A finite difference approach for solution of Burgers’ equation”, Applied Mathematics and Computation, 175, 1245-1255.
  • İnan, B., Bahadır, A. R. 2013a. “Numerical solution of the one-dimensional Burgers’ equation: Implicit and fully implicit exponential finite difference methods”, PRAMANA journal of physics, 81(4), 547-556.
  • İnan, B., Bahadır, A. R. 2013b. “An explicit exponential finite difference method for the Burgers’ equation”, European International Journal of Science and Technology, 2(10), 61-72.
  • Kutluay, S., Esen, A. & Dag, I. 2004. “Numerical solutions of the Burgers’ equation by the least-squares quadratic B-spline finite element method”, Journal of Computational and Applied Mathematics, 167, 21-33.
  • Öziş, T., Aksan, E. N. and Özdeş, A. 2003. “A finite element approach for solution of Burgers’ equation”, Applied Mathematics and Computation, 139, 417–428.
  • Salkuyeh, D. K. , Sharafeh, F. S. 2009. “On the numerical solution of the Burgers’s equation”, International Journal of Computer Mathematics, 86, 1334-1344.
Year 2020, , 984 - 994, 31.12.2020
https://doi.org/10.18185/erzifbed.688390

Abstract

References

  • Aksan, E. N., Özdeş, A. 2004. “A numerical solution of Burgers’ equation”, Applied Mathematics and Computation, 156, 395-402.
  • Aksan, E. N. 2005. “A numerical solution of Burgers’ equationby finite element method constructed on the method of discretization in time”, Applied Mathematics and Computation, 170, 895-904.
  • Bateman, H. 1915. “Some recent researches in motion of fluids”, Monthly Weather Review, 43, 163-170.
  • Burgers, J. M. 1939. “Mathematical examples illustrating relations occuring in the theory of turbulent fluid motion”, Transactions of the Royal Netherlands Academy of Science (Amsterdam), 17, 1-153.
  • Çelikten, G., Göksu, A. & Yagub, G. 2017. “Explicit Logarithmic Finite Difference Schemes For Numerical Solution of Burgers Equation”, European International Journal of Science and Technology, 6(5), 57-67.
  • Gülsu, M., Öziş, T. 2005. “Numerical solution of Burgers’ equation with restrictive Taylor Approximation”, Applied Mathematics and Computation, 171, 1192-1200.
  • Gülsu, M. 2006. “A finite difference approach for solution of Burgers’ equation”, Applied Mathematics and Computation, 175, 1245-1255.
  • İnan, B., Bahadır, A. R. 2013a. “Numerical solution of the one-dimensional Burgers’ equation: Implicit and fully implicit exponential finite difference methods”, PRAMANA journal of physics, 81(4), 547-556.
  • İnan, B., Bahadır, A. R. 2013b. “An explicit exponential finite difference method for the Burgers’ equation”, European International Journal of Science and Technology, 2(10), 61-72.
  • Kutluay, S., Esen, A. & Dag, I. 2004. “Numerical solutions of the Burgers’ equation by the least-squares quadratic B-spline finite element method”, Journal of Computational and Applied Mathematics, 167, 21-33.
  • Öziş, T., Aksan, E. N. and Özdeş, A. 2003. “A finite element approach for solution of Burgers’ equation”, Applied Mathematics and Computation, 139, 417–428.
  • Salkuyeh, D. K. , Sharafeh, F. S. 2009. “On the numerical solution of the Burgers’s equation”, International Journal of Computer Mathematics, 86, 1334-1344.
There are 12 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Makaleler
Authors

Gonca Çelikten 0000-0002-2639-2490

Publication Date December 31, 2020
Published in Issue Year 2020

Cite

APA Çelikten, G. (2020). Burgers Denkleminin Sayısal Çözümleri için Logaritmik Sonlu Fark Yöntemleri. Erzincan University Journal of Science and Technology, 13(3), 984-994. https://doi.org/10.18185/erzifbed.688390