Research Article
BibTex RIS Cite

k. Mertebeden Periyodik Katsayılı x(n+k)=A(n)x(n) Lineer Fark Denklem Sisteminin Schur Kararlılığının Hassasiyeti

Year 2020, , 995 - 1003, 31.12.2020
https://doi.org/10.18185/erzifbed.694163

Abstract

Bu çalışmada, Schur kararlı k. mertebeden x(n+k)=A(n)x(n) periyodik katsayılı fark denklem sisteminin hangi bozunumlar altında Schur kararlı kaldığını belirleyen süreklilik teoremleri ve sistemin ω^* -Schur kararlılığı üzerine yeni sonuçlar verildi. Elde edilen sonuçlar nümerik örnekler ile desteklendi ve literatürdeki sonuçlar ile karşılaştırıldı.

References

  • Referans1 Akın, Ö. ve Bulgak, H. (1998), “Lineer fark denklemleri ve kararlılık teorisi”, Selçuk Üniversitesi Uygulamalı Matematik Araştırma Merkezi Yayınları, Konya. Referans2 Aydın, K., Bulgak, H. and Demidenko, G. V. 2000, “Numeric characteristics for asymptotic stability of solutions to linear difference equations with periodic coefficients”, Siberian Mathematical Journal, 41, 1005-1014. Referans3 Aydın, K., Bulgak, H. and Demidenko, G. V. 2001, “Continuity of numeric characteristics for asymptotic stability of solutions to linear difference equations with periodic coefficients”, Selçuk Journal Applied Mathematics, 2 , 5-10. Referans4 Bulgak, H. 1999, “Spectral portrait of a matrix and their connections with different criteria of stability” Nato Science Series, Series C: Mathematical and Physical Sciences, 536, 95-124. Referans5 Bulgak, H. and Eminov, D. 2001, “Computer dialogue system MVC”, Selcuk Journal Applied Mathematics, 2, 17-38. Referans6 Duman, A. and Aydın, K. 2011, “Sensitivity of Schur stability of monodromy matrix”, Applied Mathematics and Computation, 217, 6663–6670. Referans7 Duman, A. , Çelik Kızılkan, G., Aydın, K. 2016, “Sensitivity of Schur stability of systems of linear difference equations with periodic coefficients”, New Trends in Mathematical Sciences, 4 (2) , 159-173. Referans8 Wilkinson, J. H.(1965), “The algebraic eigenvalue problem”, Clarendom Press, Oxford.
Year 2020, , 995 - 1003, 31.12.2020
https://doi.org/10.18185/erzifbed.694163

Abstract

References

  • Referans1 Akın, Ö. ve Bulgak, H. (1998), “Lineer fark denklemleri ve kararlılık teorisi”, Selçuk Üniversitesi Uygulamalı Matematik Araştırma Merkezi Yayınları, Konya. Referans2 Aydın, K., Bulgak, H. and Demidenko, G. V. 2000, “Numeric characteristics for asymptotic stability of solutions to linear difference equations with periodic coefficients”, Siberian Mathematical Journal, 41, 1005-1014. Referans3 Aydın, K., Bulgak, H. and Demidenko, G. V. 2001, “Continuity of numeric characteristics for asymptotic stability of solutions to linear difference equations with periodic coefficients”, Selçuk Journal Applied Mathematics, 2 , 5-10. Referans4 Bulgak, H. 1999, “Spectral portrait of a matrix and their connections with different criteria of stability” Nato Science Series, Series C: Mathematical and Physical Sciences, 536, 95-124. Referans5 Bulgak, H. and Eminov, D. 2001, “Computer dialogue system MVC”, Selcuk Journal Applied Mathematics, 2, 17-38. Referans6 Duman, A. and Aydın, K. 2011, “Sensitivity of Schur stability of monodromy matrix”, Applied Mathematics and Computation, 217, 6663–6670. Referans7 Duman, A. , Çelik Kızılkan, G., Aydın, K. 2016, “Sensitivity of Schur stability of systems of linear difference equations with periodic coefficients”, New Trends in Mathematical Sciences, 4 (2) , 159-173. Referans8 Wilkinson, J. H.(1965), “The algebraic eigenvalue problem”, Clarendom Press, Oxford.
There are 1 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Makaleler
Authors

Gülnur Çelik Kızılkan 0000-0003-1538-082X

Ahmet Duman 0000-0002-4022-5285

Publication Date December 31, 2020
Published in Issue Year 2020

Cite

APA Çelik Kızılkan, G., & Duman, A. (2020). k. Mertebeden Periyodik Katsayılı x(n+k)=A(n)x(n) Lineer Fark Denklem Sisteminin Schur Kararlılığının Hassasiyeti. Erzincan University Journal of Science and Technology, 13(3), 995-1003. https://doi.org/10.18185/erzifbed.694163