Research Article
BibTex RIS Cite

The Effect of Alkaline Pretreatment Parameters on the Isolation Efficiency of Macromolecules from Apricot Kernel Shell and Tea Waste

Year 2020, , 1004 - 1015, 31.12.2020
https://doi.org/10.18185/erzifbed.702091

Abstract

In this study, the tea pulp and apricot kernel was used as biomass resource. The effect of the alkali pretreatment parameter’s on the isolation efficiency of the main components was investigated. The investigated parameters in the study are the concentration of alkaline (10 g/L -40 g/L), the concentration of hydrogen peroxide (1% - 5%) and the contact time (3-8 hour). FTIR, TGA, H-NMR and XRD analyzes were performed during the characterization of main components.
The optimum contact time and alkaline concentration were determined as 6 h, and 20 g/L, respectively. The isolation efficiencies of hemicellulose, cellulose and lignin at optimum conditions (based on raw material) were determined as 36%, 25%, 23% for the tea pulp and 26%, 34%, 24% for apricot kernel, respectively. It has been determined that the hydrogen peroxide concentration increases the hemicellulose and cellulose isolation efficiency up to a certain concentration, but when the hydrogen peroxide ratio was exceeded the critical value the basic components were degraded. As a result of the H-NMR analysis of tea pulp and apricot kernel hemicelluloses revealed that the isolated hemicellulosic fraction contained anhydro xylose units, 4-O-methyl glucuronic acid. It has been found that the isolated cellulosic fractions have a degree of crystallinity in the range of 60 - 55%. As a result of FTIR analysis of hemicellulose and cellulose, it was found that isolation could not be performed effectively. It was determined that the cellulosic fractions contained xylan residues and the hemicellulose fractions contained aromatic skeleton of the lignin.

References

  • Buranov, A. U. ve Mazza, G., 2008. Lignin in straw of herbaceous crops. Industrial Crops and Products, 28, 237-259.
  • Dax, D., Chávez, M.S., Xu, C., Willför, S., Mendonca, R.T., Sánchez, J. 2014. Cationic hemicellulose-based hydrogels for arsenic and chromium removal from aqueous solutions, Carbohydrate Polymers, 111, 797–805.
  • Goh, W.N., Rosma, A., Kaur, B., Fazilah, A., Karim, A.A., Bhat, R. 2012. Microstructure and physical properties of microbial cellulose produced during fermentation of black tea broth (Kombucha). II. Int. Food Res. J. 19(1): 153-158.
  • Howard, R.L., Abotsi, A., Jansen, E.L. ve Howard, S., 2003. Lignocellulose biotechnology: issues of bioconversion and enzyme production. African Journal of Biotechnology, 2(12), 602-619.
  • Karaaslan, M.A., Tshabalala, M.A., Yelle, D.J., Buschle-Diller, G. 2011. Nanoreinforced biocompatible hydrogels from wood hemicelluloses and cellulose whiskers, Carbohydrate Polymers, 86, 192– 201.
  • Kurtuluş M, 2010. Lignoselülozik materyallerden termokatalitik işlemle suda çözündürülen polisakkaritlerin moleküler yapılarının incelenmesi, Çukurova Üniversitesi, Fen Bilimleri Enstitüsü, Kimya Anabilim Dalı.
  • Laka, M. ve Chernyavskaya, S., 2007. Obtaining microcrystalline cellulose from softwood and hardwood pulp. Bioresources, 2 (3), 583-589.
  • Lan, W., Liu, C.-Fu., Sun, R.C. 2011. Fractionation of Bagasse into Cellulose, Hemicelluloses, and Lignin with Ionic Liquid Treatment Followed by Alkaline Extraction, J. Agric. Food Chem., 59, 8691–8701
  • Leppänen, K., Anderson, S., Torkkeli, M., Knaapila, M., Kotelnikova, N., Serimaa, R., 2009. Structure of cellulose and microcrystalline cellulose from various species, cotton and flax studied by x-ray scattering. Cellulose, 16: 999-1015.
  • Mohan, D., Pittman, C.U. ve Steele, P.H. 2006. Pyrolysis of wood/biomass for bio-oil: A critical review, Energy and Fuels, 20, 848-889.
  • Nada, A.M.A., El-Kady, M.Y., El-Sayed, E.S., Amine, F.M., 2009. Preparation and characterization of microcrystalline cellulose (MCC). BioResources, 4,1359-1371.
  • Öztürk, İ., Irmak, S., Hesenov, A., Erbatur, O., 2010. Hydrolysis of kenaf (Hibiscus cannabinus L.) stems by catalytical thermal treatment in subcritical water. Biomass and Bioenergy, 1-8.
  • Peng, X.W., Ren, J.L., Zhong, L.X., Peng, F., Sun, R.C. 2011. Xylan-rich hemicelluloses-graft-acrylic acid ionic hydrogels with rapid responses to pH,salt, and organic solvents, Journal of Agricultural and Food Chemistry, 59,8208–8215.
  • Peng, F., Peng, P., Xu, F. ve Sun R-C., 2012. Franctional purification and bioconversion of hemicelluloses. Biotechnology Advances, 30, 879-903.
  • Ruiz, H.A., Cerqueira, M.A., Silva, H.D. Rodríguez-Jasso R.M., Vicente A.A., Teixeira J.A. 2013. Biorefinery valorization of autohydrolysis wheat straw hemicellulose to be applied in a polymer-blend film, Carbohydr. Polym., 92, 2154-2162
  • Salam, A., Venditti, R.A., Pawlak, J.J., El-Tahlawy, K. 2011. Crosslinked hemicellulose citrate–chitosan aerogel foams, Carbohydrate Polymers, 84, 1221–1229.
  • Sasaki, C., Sumimoto, K., Asada, C. ve Nakamura, Y., 2012. Direct hydrolysis of cellulose to glucose using ultra-high temperature and pressure steam explosion. Carbohydrate Polymers, 89, 298-301.
  • Silva, C.G., Grelier, S., Pichavant, F., Frollini, E., Castellan, A., 2013. Adding value to lignins isolated from sugarcane bagasse and Miscanthus. Industrial Crops andProducts, 42, 87-95.
  • Sun, R., Lawther, J.M. ve Banks, W.B., 1997. A tentative chemical structure of wheat straw lignin. Industrial Crops and Products, 6, 1-8.
  • Sun, J.X., Sun, X.F., Zhao, H., Sun, R.C. 2004a. Isolation and characterization of cellulose from sugarcane bagasse, Polymer Degradation and Stability, 84, 331-339.
  • Sun, R., Lawther, J.M., Banks, W.B., 1999. Fractional and structural characterization of wheat straw hemicelluloses. Carbohydrrate Polymers 49, 415-423
  • Sun, R. and Hughes, S. 1998. Fractional extraction and physico-chemical characterization of hemicelluloses and cellulose from sugar beet pulp, Carbohydrate Polymers, 36, 293–299.
  • Sun, J., X., Mao, F., C., Sun, X., F., Sun, R., C., 2004b. Comparative Study of Hemicelluloses Isolated with Alkaline Peroxide from Lignocellulosic Materials. Journal of Wood Chemistry and Technology, 24, 239-262.
  • Sun, R.C., Tomkinson, J., 2002. Characterization of hemicelluloses obtained by classical and ultrasonically assisted extractions from wheat straw. Carbohydr. Polym. 50, 263–271.
  • Taşar Ş, 2018, Atık Çay Posasındanbiyobozunur Ve Antimikrobiyal Polimerik Jel-Film Üretimi Ve Karakterizasyonu, Doktora tezi, Fırat Üniversitesi, Fenbilimleri Enstitüsü.
  • Taşar Ş, 2011, Mobilya fabrikası atık tozunun pirolizi, Yüksek Lisans tezi, Fırat Üniversitesi, Fenbilimleri Enstitüsü.
  • Teeäär, R., Serimaa, R., Paakkari, T., 1987. Crystallinity of cellulose, as determined by cp/mas nmr and xrd methods. Polym. Bull., 17: 231-237.
  • Usal G., 2014, Buğday tarlası atıklarından alkali hidroliz ile fenolik bileşiklerin üretimi ve üretim koşullarının optimizasyonu, Gaziosmanpaşa Üniversitesi, Fen Bilimleri Enstitüsü
  • Varol E. A., 2007. Farklı Biyokütlelere Değişik ısıl işlemler Uygulanması ve Elde Edilen Ürün Özelliklerinin Belirlenmesi, Doktora Tezi, Anadolu Üniversitesi, Fenbilimleri Enstitüsü.
  • Yang, J.Y., Zhou, X.S., Fang, J. 2011. Synthesis and characterization of temperature sensitive hemicellulose-based hydrogels, Carbohydrate Polymers, 86(3), 1113–1117.
  • Xiao-Feng Sun, Zhanxin Jing, Paul Fowler, Yaoguo Wu, M. 2011. Rajaratnam Structural characterization and isolation of lignin and hemicelluloses from barley straw, Industrial Crops and Products, 33, 588–598
  • Xu, F., Sun, J., X., L.iu, C., F., Sun, R., C., 2006. Comparative Study of Alkali- and Acidic Organic Solvent-Soluble Hemicellulosic Polysaccharides from Sugarcane Bagasse. Carbohydrate Research, 341, 253-261.

Kayısı Çekirdeği Kabuğu ve Çay Atığından Makromoleküllerin İzolasyon Verimi Üzerine Alkali Ön İşlem Parametrelerinin Etkisi

Year 2020, , 1004 - 1015, 31.12.2020
https://doi.org/10.18185/erzifbed.702091

Abstract

Bu çalışmada çay posası (çay demleme atığı) ve kayısı çekirdeği biyokütle kaynağı olarak kullanıldı. Alkali ön işlem süreci ile temel bileşenler izole edilmeye çalışıldı Alkali ön işlem süreç parametrelerinin izolasyon verimleri üzerine etkisi incelendi. Etkisi incelenen parametreler; alkalin konsantrasyonu (10 g / L -40 g / L), peroksit konsantrasyonu (% 1 - % 5) ve temas süresi (3-8 saat)’dir. TGA, H-NMR ve XRD analizleri ile izole edilen temel bileşenler karakterize edildi.
Optimum temas süresi ve alkalin konsantrasyonu sırasıyla 6 saat ve 20 g/L olarak belirlendi. Hemiselüloz, selüloz ve ligninin optimum koşullarda (hammaddeye bağlı olarak) izolasyon verimliliği, çay posası için sırasıyla % 36,% 25,% 23 ve kayısı çekirdeği için % 26,% 34,% 24 olarak belirlendi. Peroksit konsantrasyonunun hemiselüloz ve selüloz izolasyon verimliliğini belirli bir konsantrasyona kadar arttırdığı, ancak peroksit oranı kritik değeri aştığında ve temel bileşenlerin bozulduğu tespit edildi. Çay posası ve kayısı çekirdeği hemiselülozlarının H-NMR analizi sonucunda, izole hemiselülozik fraksiyonun anhidro ksiloz birimleri, 4-O-metil glukuronik asit içerdiğini anlaşıldı. İzole edilmiş selülozik fraksiyonların,% 60-55 aralığında bir kristallik derecesine sahip oldukları bulundu. Hemiselüloz ve selülozun FTIR analizi sonucunda izolasyonun etkili bir şekilde yapılamadığı bulunmuştur. Selülozik fraksiyonların ksilan kalıntıları ve hemiselüloz fraksiyonlarının ligninin aromatik iskeletini içerdiği tespit edildi.

References

  • Buranov, A. U. ve Mazza, G., 2008. Lignin in straw of herbaceous crops. Industrial Crops and Products, 28, 237-259.
  • Dax, D., Chávez, M.S., Xu, C., Willför, S., Mendonca, R.T., Sánchez, J. 2014. Cationic hemicellulose-based hydrogels for arsenic and chromium removal from aqueous solutions, Carbohydrate Polymers, 111, 797–805.
  • Goh, W.N., Rosma, A., Kaur, B., Fazilah, A., Karim, A.A., Bhat, R. 2012. Microstructure and physical properties of microbial cellulose produced during fermentation of black tea broth (Kombucha). II. Int. Food Res. J. 19(1): 153-158.
  • Howard, R.L., Abotsi, A., Jansen, E.L. ve Howard, S., 2003. Lignocellulose biotechnology: issues of bioconversion and enzyme production. African Journal of Biotechnology, 2(12), 602-619.
  • Karaaslan, M.A., Tshabalala, M.A., Yelle, D.J., Buschle-Diller, G. 2011. Nanoreinforced biocompatible hydrogels from wood hemicelluloses and cellulose whiskers, Carbohydrate Polymers, 86, 192– 201.
  • Kurtuluş M, 2010. Lignoselülozik materyallerden termokatalitik işlemle suda çözündürülen polisakkaritlerin moleküler yapılarının incelenmesi, Çukurova Üniversitesi, Fen Bilimleri Enstitüsü, Kimya Anabilim Dalı.
  • Laka, M. ve Chernyavskaya, S., 2007. Obtaining microcrystalline cellulose from softwood and hardwood pulp. Bioresources, 2 (3), 583-589.
  • Lan, W., Liu, C.-Fu., Sun, R.C. 2011. Fractionation of Bagasse into Cellulose, Hemicelluloses, and Lignin with Ionic Liquid Treatment Followed by Alkaline Extraction, J. Agric. Food Chem., 59, 8691–8701
  • Leppänen, K., Anderson, S., Torkkeli, M., Knaapila, M., Kotelnikova, N., Serimaa, R., 2009. Structure of cellulose and microcrystalline cellulose from various species, cotton and flax studied by x-ray scattering. Cellulose, 16: 999-1015.
  • Mohan, D., Pittman, C.U. ve Steele, P.H. 2006. Pyrolysis of wood/biomass for bio-oil: A critical review, Energy and Fuels, 20, 848-889.
  • Nada, A.M.A., El-Kady, M.Y., El-Sayed, E.S., Amine, F.M., 2009. Preparation and characterization of microcrystalline cellulose (MCC). BioResources, 4,1359-1371.
  • Öztürk, İ., Irmak, S., Hesenov, A., Erbatur, O., 2010. Hydrolysis of kenaf (Hibiscus cannabinus L.) stems by catalytical thermal treatment in subcritical water. Biomass and Bioenergy, 1-8.
  • Peng, X.W., Ren, J.L., Zhong, L.X., Peng, F., Sun, R.C. 2011. Xylan-rich hemicelluloses-graft-acrylic acid ionic hydrogels with rapid responses to pH,salt, and organic solvents, Journal of Agricultural and Food Chemistry, 59,8208–8215.
  • Peng, F., Peng, P., Xu, F. ve Sun R-C., 2012. Franctional purification and bioconversion of hemicelluloses. Biotechnology Advances, 30, 879-903.
  • Ruiz, H.A., Cerqueira, M.A., Silva, H.D. Rodríguez-Jasso R.M., Vicente A.A., Teixeira J.A. 2013. Biorefinery valorization of autohydrolysis wheat straw hemicellulose to be applied in a polymer-blend film, Carbohydr. Polym., 92, 2154-2162
  • Salam, A., Venditti, R.A., Pawlak, J.J., El-Tahlawy, K. 2011. Crosslinked hemicellulose citrate–chitosan aerogel foams, Carbohydrate Polymers, 84, 1221–1229.
  • Sasaki, C., Sumimoto, K., Asada, C. ve Nakamura, Y., 2012. Direct hydrolysis of cellulose to glucose using ultra-high temperature and pressure steam explosion. Carbohydrate Polymers, 89, 298-301.
  • Silva, C.G., Grelier, S., Pichavant, F., Frollini, E., Castellan, A., 2013. Adding value to lignins isolated from sugarcane bagasse and Miscanthus. Industrial Crops andProducts, 42, 87-95.
  • Sun, R., Lawther, J.M. ve Banks, W.B., 1997. A tentative chemical structure of wheat straw lignin. Industrial Crops and Products, 6, 1-8.
  • Sun, J.X., Sun, X.F., Zhao, H., Sun, R.C. 2004a. Isolation and characterization of cellulose from sugarcane bagasse, Polymer Degradation and Stability, 84, 331-339.
  • Sun, R., Lawther, J.M., Banks, W.B., 1999. Fractional and structural characterization of wheat straw hemicelluloses. Carbohydrrate Polymers 49, 415-423
  • Sun, R. and Hughes, S. 1998. Fractional extraction and physico-chemical characterization of hemicelluloses and cellulose from sugar beet pulp, Carbohydrate Polymers, 36, 293–299.
  • Sun, J., X., Mao, F., C., Sun, X., F., Sun, R., C., 2004b. Comparative Study of Hemicelluloses Isolated with Alkaline Peroxide from Lignocellulosic Materials. Journal of Wood Chemistry and Technology, 24, 239-262.
  • Sun, R.C., Tomkinson, J., 2002. Characterization of hemicelluloses obtained by classical and ultrasonically assisted extractions from wheat straw. Carbohydr. Polym. 50, 263–271.
  • Taşar Ş, 2018, Atık Çay Posasındanbiyobozunur Ve Antimikrobiyal Polimerik Jel-Film Üretimi Ve Karakterizasyonu, Doktora tezi, Fırat Üniversitesi, Fenbilimleri Enstitüsü.
  • Taşar Ş, 2011, Mobilya fabrikası atık tozunun pirolizi, Yüksek Lisans tezi, Fırat Üniversitesi, Fenbilimleri Enstitüsü.
  • Teeäär, R., Serimaa, R., Paakkari, T., 1987. Crystallinity of cellulose, as determined by cp/mas nmr and xrd methods. Polym. Bull., 17: 231-237.
  • Usal G., 2014, Buğday tarlası atıklarından alkali hidroliz ile fenolik bileşiklerin üretimi ve üretim koşullarının optimizasyonu, Gaziosmanpaşa Üniversitesi, Fen Bilimleri Enstitüsü
  • Varol E. A., 2007. Farklı Biyokütlelere Değişik ısıl işlemler Uygulanması ve Elde Edilen Ürün Özelliklerinin Belirlenmesi, Doktora Tezi, Anadolu Üniversitesi, Fenbilimleri Enstitüsü.
  • Yang, J.Y., Zhou, X.S., Fang, J. 2011. Synthesis and characterization of temperature sensitive hemicellulose-based hydrogels, Carbohydrate Polymers, 86(3), 1113–1117.
  • Xiao-Feng Sun, Zhanxin Jing, Paul Fowler, Yaoguo Wu, M. 2011. Rajaratnam Structural characterization and isolation of lignin and hemicelluloses from barley straw, Industrial Crops and Products, 33, 588–598
  • Xu, F., Sun, J., X., L.iu, C., F., Sun, R., C., 2006. Comparative Study of Alkali- and Acidic Organic Solvent-Soluble Hemicellulosic Polysaccharides from Sugarcane Bagasse. Carbohydrate Research, 341, 253-261.
There are 32 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Makaleler
Authors

Zeynep Ceylan This is me 0000-0002-3006-9768

Şeyda Taşar 0000-0003-3184-1542

Fatih Kaya 0000-0002-4063-8362

Ahmet Özer 0000-0002-8075-3672

Publication Date December 31, 2020
Published in Issue Year 2020

Cite

APA Ceylan, Z., Taşar, Ş., Kaya, F., Özer, A. (2020). Kayısı Çekirdeği Kabuğu ve Çay Atığından Makromoleküllerin İzolasyon Verimi Üzerine Alkali Ön İşlem Parametrelerinin Etkisi. Erzincan University Journal of Science and Technology, 13(3), 1004-1015. https://doi.org/10.18185/erzifbed.702091