Research Article
BibTex RIS Cite

Effects of Magnet Type and Thickness on Outer Rotor Brushless Direct Current Motor Designed by Calculating the Required Motor Power for an Electric Vehicle Prototype

Year 2020, , 1025 - 1041, 31.12.2020
https://doi.org/10.18185/erzifbed.707837

Abstract

While electric vehicles are taking their place as today's transportation vehicles, big R&D investments are being made by automobile manufacturers. Outer and inner rotor motors are used for electric vehicles. Considering the fact that the transmission organs make the structure more complex, outer rotor motors come into prominence in applications requiring small power. This study includes the design of outer rotor brushless direct current motor for electric vehicle prototypes. In addition, the effects of magnet type and magnet thickness on the design were analyzed in detail. The effects of magnet type and magnet thickness selected in the design of outer brushless direct current motor can be observed from the results, especially effecting power and torque parameters.

Supporting Institution

Scientific Research Projects Coordination Unit of Istanbul University - Cerrahpasa

Project Number

52033_Production of Brushless DC Motor and Driver with Replaceable Magnetic Field

Thanks

This study was funded by the Scientific Research Projects Coordination Unit of Istanbul University - Cerrahpasa. Project number: 52033

References

  • Cabuk AS, Saglam S, Tosun G, Ustun O. (2016) “Investigation of different slot-pole combinations of an ın-wheel BLDC motor for light electric vehicle propulsion.” International Conference on ELECO’16, Bursa, Turkey.
  • Cagislar AS. (2018) “Brushless Direct Current Motor Design for Electric Vehicles.” MSc Thesis, Institute of Graduate Studies In Sciences, Istanbul University, Istanbul, Turkey. (In Turkish)
  • Fezzani WE, Amor AB. (2013) “Finite element methods applied to the tubular linear stepping motor.” Journal of Electromagnetic Analysis and Applications, 5(5), 219-222.
  • Hanselman D. (2003) “Brushless Permanent Magnet Motor Design.” 9nd ed. Lebanon, Magna Physics Publishing. Jafarboland M, Sargazi MM. (2018) “Analytical modelling of the effect of pole offset on the output parameters of BLDC motor”. IET Electric Power Applications, 12(5), 666-676.
  • Kim YS, Kim JY, Kang DW, Lee J. (2016) “Reliability analysis of permanent magnet and air-gap flux density of spoke-type ıpmsm for driving cooling fans”. Indian Journal of Science and Technology, 9(14), 1-6.
  • Libert F, Soulard J. (2004) “Investigation on pole-slot combinations for permanent-magnet machines with concentrated windings”. International Conference on Electric Machines (ICEM”04), Cracow, Poland.
  • Luo Y, Zhu Y, Yu Y, Zhang L. (2018) “Inductance and force calculations of circular coils with parallel axes shielded by a cuboid of high permeability”. IET Electric Power Applications, 12(5), 717-727.
  • Ma C, Li Q, Lu H, Liu Y, Gao H. (2018) “Analytical model for armature reaction of outer rotor brushless permanent magnet DC motor”. IET Electric Power Applications, 12(5), 651-657.
  • Maxwell, (2015) “ANSYS Maxwell Electromagnetics Suite 16.0.0”, Reference Manual.
  • Mhango LMC. (1989) “Benefits of Nd-Fe-B magnet in brushless DC motor design for aircraft applications”. Fourth International Conference on Electrical Machines and Drives, London, England, 13-15 September.
  • Oztura H, Canbaz H. (2003) “Analysis of reduction of torque in no-load conditions in permanent magnet variable air range motors”. 10th Electical – Electronics – Computer Engineering Congress, Istanbul, Turkey, 18-21. (In Turkish)
  • Pahlavani MRA, Ayat YS, Vahedi A. (2017) “Minimisation of torque ripple in slotless axial flux BLDC motors in terms of design considerations”. IET Electric Power Applications, 11(6), 1124–1130.
  • Prosperi D, Bevan AI, Ugalde G, Tudor CO, Furlan G, Dove SK, Lucia P, Zakotnik M. (2018) “Performance comparison of motors fitted with magnet-tomagnet recycled or conventionally manufactured sintered NdFeB”. Journal of Magnetism and Magnetic Materials, 460(2018), 448-453.
  • Shen S, Tsoi M, Prosperi D, Tudor CO, Dove SK, Bevan AI, Furlan G, Zakotnik M. (2017) “A comparative study of magnetoresistance and magnetic structure in recycled vs. virgin NdFeB-type sintered magnets”. Journal of Magnetism and Magnetic Materials, 422(2017), 158-162.
  • Staszak J. (2013) “Determination of slot leakage inductance for three-phase induction motor winding using an analytical method”. Archives of Electrical Engineering, 62(4), 569-591.
  • Tiryaki H, Akgündoğdu A, Erdoğan G, Karadeniz O, Şahin U, Yılmaz MY, Durak Y, Kocaarslan I. (2017) “Implementation of an electromobile for efficiency challenge”. World Electro Mobility Conference (WELMO’17), Izmir, Turkey. (In Turkish)
  • Tiryaki H, Cagislar AS, Akgundogdu A, Kocaarslan I. (2016) “Commutable magnetic field on brushless direct current motor for electrical vehicle”. International Journal of Engineering Research and Development, 8(2), 37-45. (In Turkish)
  • Vidhya B, Srinivas KN. (2017) “Effect of stator permanent magnet thickness and rotor geometry modifications on the minimization of cogging torque of a flux reversal machine”. Turkish Journal of Electrical Engineering & Computer Sciences, 25(2017), 4907-4922.
  • Yedemale P. (2003) “Brushless DC (BLDC) Motor Fundamentals”. Microchip Technology Inc., USA, App. Note: DS00885A.
  • Ziegenbein J. (2011) “Magnetic Clamping Structures for The Consolidation of Composite Laminates”. PhD Thesis (PhD), Georgia Institute of Technology, North Ave NW/Atlanta, USA.

Bir Elektrikli Araç Prototipi İçin Gerekli Motor Gücü Hesaplanarak Tasarlanan Dış Rotorlu Fırçasız Doğru Akım Motoruna Mıknatıs Tipinin ve Kalınlığının Etkileri

Year 2020, , 1025 - 1041, 31.12.2020
https://doi.org/10.18185/erzifbed.707837

Abstract

Elektrikli araçlar günümüzün ulaşım araçları olarak yerini alırken otomobil üreticileri tarafından bu konuda büyük Ar-Ge yatırımları yapılmaktadır. Bu konuda popülerleşen elektrikli araçlar için dışsal ve içsel rotorlu motorlar kullanılmaktadır. Aktarım organlarının yapıyı daha karmaşıklaştırdığı göz önünde bulundurulduğunda dışsal rotorlu motorlar küçük güç gerektiren uygulamalarda verimlilikleri ile ön plana çıkmaktadır. Bu çalışma prototip elektrikli araçlar için dış rotorlu fırçasız doğru akım motoru tasarımını içermektedir. Ayrıca yapılan analizler ile mıknatıs tipinin ve mıknatıs kalınlığının tasarıma etkileri detaylı olarak incelenmiştir. Elde edilen sonuçlar; kullanılan mıknatıs tipinin ve kalınlığının fırçasız doğru akım motorunun tasarımında dikkat edilmesi gereken verim, güç ve tork parametrelerine etkilerini net olarak gözler önüne sermektedir.

Project Number

52033_Production of Brushless DC Motor and Driver with Replaceable Magnetic Field

References

  • Cabuk AS, Saglam S, Tosun G, Ustun O. (2016) “Investigation of different slot-pole combinations of an ın-wheel BLDC motor for light electric vehicle propulsion.” International Conference on ELECO’16, Bursa, Turkey.
  • Cagislar AS. (2018) “Brushless Direct Current Motor Design for Electric Vehicles.” MSc Thesis, Institute of Graduate Studies In Sciences, Istanbul University, Istanbul, Turkey. (In Turkish)
  • Fezzani WE, Amor AB. (2013) “Finite element methods applied to the tubular linear stepping motor.” Journal of Electromagnetic Analysis and Applications, 5(5), 219-222.
  • Hanselman D. (2003) “Brushless Permanent Magnet Motor Design.” 9nd ed. Lebanon, Magna Physics Publishing. Jafarboland M, Sargazi MM. (2018) “Analytical modelling of the effect of pole offset on the output parameters of BLDC motor”. IET Electric Power Applications, 12(5), 666-676.
  • Kim YS, Kim JY, Kang DW, Lee J. (2016) “Reliability analysis of permanent magnet and air-gap flux density of spoke-type ıpmsm for driving cooling fans”. Indian Journal of Science and Technology, 9(14), 1-6.
  • Libert F, Soulard J. (2004) “Investigation on pole-slot combinations for permanent-magnet machines with concentrated windings”. International Conference on Electric Machines (ICEM”04), Cracow, Poland.
  • Luo Y, Zhu Y, Yu Y, Zhang L. (2018) “Inductance and force calculations of circular coils with parallel axes shielded by a cuboid of high permeability”. IET Electric Power Applications, 12(5), 717-727.
  • Ma C, Li Q, Lu H, Liu Y, Gao H. (2018) “Analytical model for armature reaction of outer rotor brushless permanent magnet DC motor”. IET Electric Power Applications, 12(5), 651-657.
  • Maxwell, (2015) “ANSYS Maxwell Electromagnetics Suite 16.0.0”, Reference Manual.
  • Mhango LMC. (1989) “Benefits of Nd-Fe-B magnet in brushless DC motor design for aircraft applications”. Fourth International Conference on Electrical Machines and Drives, London, England, 13-15 September.
  • Oztura H, Canbaz H. (2003) “Analysis of reduction of torque in no-load conditions in permanent magnet variable air range motors”. 10th Electical – Electronics – Computer Engineering Congress, Istanbul, Turkey, 18-21. (In Turkish)
  • Pahlavani MRA, Ayat YS, Vahedi A. (2017) “Minimisation of torque ripple in slotless axial flux BLDC motors in terms of design considerations”. IET Electric Power Applications, 11(6), 1124–1130.
  • Prosperi D, Bevan AI, Ugalde G, Tudor CO, Furlan G, Dove SK, Lucia P, Zakotnik M. (2018) “Performance comparison of motors fitted with magnet-tomagnet recycled or conventionally manufactured sintered NdFeB”. Journal of Magnetism and Magnetic Materials, 460(2018), 448-453.
  • Shen S, Tsoi M, Prosperi D, Tudor CO, Dove SK, Bevan AI, Furlan G, Zakotnik M. (2017) “A comparative study of magnetoresistance and magnetic structure in recycled vs. virgin NdFeB-type sintered magnets”. Journal of Magnetism and Magnetic Materials, 422(2017), 158-162.
  • Staszak J. (2013) “Determination of slot leakage inductance for three-phase induction motor winding using an analytical method”. Archives of Electrical Engineering, 62(4), 569-591.
  • Tiryaki H, Akgündoğdu A, Erdoğan G, Karadeniz O, Şahin U, Yılmaz MY, Durak Y, Kocaarslan I. (2017) “Implementation of an electromobile for efficiency challenge”. World Electro Mobility Conference (WELMO’17), Izmir, Turkey. (In Turkish)
  • Tiryaki H, Cagislar AS, Akgundogdu A, Kocaarslan I. (2016) “Commutable magnetic field on brushless direct current motor for electrical vehicle”. International Journal of Engineering Research and Development, 8(2), 37-45. (In Turkish)
  • Vidhya B, Srinivas KN. (2017) “Effect of stator permanent magnet thickness and rotor geometry modifications on the minimization of cogging torque of a flux reversal machine”. Turkish Journal of Electrical Engineering & Computer Sciences, 25(2017), 4907-4922.
  • Yedemale P. (2003) “Brushless DC (BLDC) Motor Fundamentals”. Microchip Technology Inc., USA, App. Note: DS00885A.
  • Ziegenbein J. (2011) “Magnetic Clamping Structures for The Consolidation of Composite Laminates”. PhD Thesis (PhD), Georgia Institute of Technology, North Ave NW/Atlanta, USA.
There are 20 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Makaleler
Authors

Alper Sefa Çağışlar 0000-0002-1503-3388

Sedat İn 0000-0001-7784-9334

Hasan Tiryaki 0000-0001-9175-0269

Project Number 52033_Production of Brushless DC Motor and Driver with Replaceable Magnetic Field
Publication Date December 31, 2020
Published in Issue Year 2020

Cite

APA Çağışlar, A. S., İn, S., & Tiryaki, H. (2020). Effects of Magnet Type and Thickness on Outer Rotor Brushless Direct Current Motor Designed by Calculating the Required Motor Power for an Electric Vehicle Prototype. Erzincan University Journal of Science and Technology, 13(3), 1025-1041. https://doi.org/10.18185/erzifbed.707837