Research Article
BibTex RIS Cite

Fluorocarbon Substituted Peripherally and Non-Peripherally Tetra Phthalocyanine Compounds: Synthesis, Characterization and Aggregation Properties

Year 2020, , 1158 - 1176, 31.12.2020
https://doi.org/10.18185/erzifbed.750043

Abstract

This work presents a series of novel peripherally and non-peripherally tetra substituted phthalocyanine derivatives containing 4-[(4,4,5,5,5-pentafluoropentyl)oxy groups. Firstly, phthalonitrile derivatives (2 and 3) were synthesized. These phthalonitrile derivatives were used synthesis of peripherally tetra substituted (metal-free 4, manganese(III) 5, nickel(II) 6 and cobalt(II) 7) phthalocyanines and non-peripherally tetra substituted (magnesium(II) 8, zinc(II) 9, nickel(II) 10 and cobalt(II) 11) functionalized with the fluorocarbon compound “4,4,5,5,5-pentafluoro-1-pentanol”. Synthesized novel compounds have been characterized by combination of the FT-IR, 1H NMR/ 13C NMR, MALDI-TOF-MS and UV-Vis spectroscopy (for phthalocyanines). In the last part of the study, the effect of the solvent on the aggregation behavior of the metallophthalocyanines NiPc (6 and 10) and CoPc (7 and 11) was studied using different solvents (THF, DMF, DMSO etc). In addition, the aggregation behavior of NiPcs and CoPcs was investigated at different concentrations ranging from 2 x 10-6 to 12 x 10-6 M in CHCl3.

Supporting Institution

Artvin Çoruh Üniversitesi

Project Number

2019.F90.02.02

Thanks

This study was supported by the Research Fund of Artvin Coruh University, Project no: 2019.F90.02.02.

References

  • Aktas Kamiloglu, A., Saka, E.T., Acar, I. and Tekintas, K. 2019. Synthesis, characterization, and photocatalytic activity of Co(II) and Cu(II) phthalocyanines linked with thiophene–Schiff base substituents for 4-nitrophenol oxidation, Journal of Coordination Chemistry, 72, 2778-2790.
  • Aktas Kamiloglu, A., Akyüz, D., Koca, A. and Acar, I. 2018. Synthesis and investigation of spectroelectrochemical properties of peripherally tetra-substituted phthalocyanine bearing 3-(4-{[3-(trifluoromethyl)benzyl]oxy}phenyl)propan-1-ol and its metallo compounds, Journal of Inclusion Phenomena and Macrocyclic Chemistry, 92, 223-235.
  • Erdogan, T., Bulut, M. and Çamur, M. 2015. Novel phthalocyanines bearing 7-oxy-3-(3,5-difluorophenyl)coumarin moieties: Synthesis, characterization, photophysical and photochemical properties, Journal of Photochemistry and Photobiology A: Chemistry,300, 6-14.
  • Ertem, B., Yalazan, H., Güngör, Ö., Sarkı, G., Durmuş, M., Saka, E.T. and Kantekin, H. 2018. Synthesis, structural characterization, and investigation on photophysical and photochemical features of new metallophthalocyanines, Journal of Luminescence 2018; 204: 464-471.
  • Gök, H.Z., Farsak, B., Keles, H. and Keles, M. 2014. Novel metal-free and metallophthalocyanines containing four 21-membered pentathiadiaza macrocycles: synthesis, characterization, and study of aggregation properties, Turk J. Chem., 38, 1073-1082.
  • Gök, Y., Gök, H.Z., Yılmaz, M.K, Farsak, M. and Karayigit, I.U. 2018. Novel peripherally and non-peripherally hydrobenzoin substituted optically active phthalocyanines: Synthesis, characterization, aggregation, electrochemical properties and catalytic applications, Polyhedron, 153,128-138.
  • Güreli, F.S., Orman, E.B., Salan, Ü., Özkaya, A. R. and Bulut, M. 2019. Synthesis, characterization, and electrochemical and in-situ spectroelectrochemical properties of novel peripherally and non-peripherally 7-oxy-3-(3,4-dimethoxyphenyl) coumarin substituted phthalocyanines, Dyes and Pigments, 160, 315-327.
  • Goslinski, T. and Piskorz, J. 2011. Fluorinated porphyrinoids and their biomedical applications, J. Photoch. Photobio. C Photochem. Rev., 12, 304-321.
  • Karaca, H. 2016. Redox chemistry, spectroelectrochemistry and catalytic activity of novel synthesized phthalocyanines bearing four schiff bases on the periphery, Journal of Organometallic Chemistry, 822, 39-45.
  • Lia, X., Zheng, B.D., Peng, X.H., Li, S.Z., Ying, J.W., Zhao, Y., Huang, J.D. and Yoon, J. 2019. Phthalocyanines as medicinal photosensitizers: Developments in the last five years. Coordination Chemistry Reviews, 379, 147-160.
  • Leznoff, C.C. and Lever, A.B.P. 1989-1996. Phthalocyanines, Properties and Applications, vols. 1-4. New York: VCH; 1989- 1996.
  • Mack, J. and Stillman, M.J. 2003. Electronic Structures of Metal Phthalocyanine and Porphyrin Complexes from Analysis of the UV-Visible Absorption and Magnetic Circular Dichroism Spectra and Molecular Orbital Calculations, The Porphyrin Handbook, Vol. 16, Academic Press, San Diego.
  • Mori, S. and Shibata, N. 2017. Synthesis and application of trifluoroethoxy-substituted phthalocyanines and subphthalocyanines, Beilstein J.Org.Chem.,13, 2273-2296.
  • Nyokong, T. 2010. Structure and Bonding: Functional Phthalocyanine Molecular Materials, series ed., D.M.P. Mingos, Springer, 135, 45-88.
  • Riquelme, J., Neira, K., Marco, J.F., Hermosilla-Ibáñez, P., Orellana, W., Zagal, J.H. and Tasca, F. 2018. Biomimicking vitamin B12. A Co phthalocyanine pyridine axial ligand coordinated catalyst for the oxygen reduction reaction, Electrochimica Acta, 265, 547-555.
  • Ochoa, A.L., Tempesti, T.C., Spesia, M.B., Milanesio, M.E. and Durantini, E.N. 2012. Synthesis and photodynamic properties of adamantylethoxy Zn(II) phthalocyanine derivatives in different media and in human red blood cells, Eur. J. Org. Chem., 50, 280-287.
  • Özçeşmeci, M., Özçeşmeci, I., Sorar, I. and Hamuryudan, E. 2017.Thin films of fluorinated groups substituted metallophthalocyanines as an optical material, Inorganic Chemistry Communications, 86, 209-212.
  • Suhailah, S.A. and Tamer, E.Y. 2018. Investigations on the antitumor activity of classical trifluoro-substituted zinc phthalocyanines derivatives, World Journal of Microbiology and Biotechnology, 34, 52.
  • Suzuki, A., Okumura, H., Yamasaki, Y. And Oku, T. 2019. Fabrication and characterization of perovskite type solar cells using phthalocyanine complexes, Applied Surface Science, 488, 586-592.
  • Schlettwein, D., Jaeger, N.I. and Oekermann, T. 2003. Photoelectrochemical Reactions at Phthalocyanine Electrodes, The Porphyrin Handbook, Academic Press, San Diego, Vol. 16.
  • Shibata, N., Das, B., Hayashi, M., Nakamura, S. and Toru, T. 2009. Synthesis, photophysical and electrochemical properties of perfluoroisoproply substituted binuclear phthalocyanine conjugated with a butadiyne linker, J. Fluorine Chem.,130, 1164-1170.
  • Saka, E.T. and Kahriman, N. 2019. (E)-4-(4-(3-(2-fluoro-5-(trifluoromethyl)phenyl)acryloyl)phenoxy)Substituted Co(II) and Cu(II) phthalocyanines and their catalytic activities on the oxidation of phenols, Journal of organometalic chem., 895, 48.
  • Tian, M., Wada, T. and Sasabe, H. 1197. Synthesis of unsymetrically substituted dodecakis(tirfluoroethoxy)phthalocyaninato vanadly complexes, J. Heterocycl. Chem., 34, 171.
  • Unluer, D., Aktas Kamiloglu, A., Direkel, S., Bektas, E., Kantekin, H. and Sancak, K. 2019. Synthesis and characterization of metallophthalocyanine with morpholine containing Schiff base and determination of their antimicrobial and antioxidant activities, Journal of Organometallic Chemistry, 900, 120936.
  • Weissbecker, J., Loas, A., Gorun, S.M. and Schlettwein, D. 2015. Switching of the Rate-limiting Step in the Electrochromic Reduction of Fluorinated Phthalocyanine Thin Films by Decreased Intermolecular Coupling, Electrochimica Acta, 157, 232–244.
  • Yanık, H., Aydın, D., Durmuş, M. and Ahsen, V. 2009. Peripheral and non-peripheral tetrasubstituted aluminium, gallium and indium phthalocyanines: Synthesis, photophysics and photochemistry, Journal of Photochemistry and Photobiology A: Chemistry, 206, 18-26.

Florokarbon Substitüte Periferal ve Non-Periferal Tetra Ftalosiyanin Bileşikleri: Sentez, Karakterizasyon ve Agregasyon Özellikleri

Year 2020, , 1158 - 1176, 31.12.2020
https://doi.org/10.18185/erzifbed.750043

Abstract

Bu çalışmada bir dizi yeni 4-[(4,4,5,5,5-pentafloropentil)oksi grubu içeren periferal ve non-periferal tetra substitüe ftalosiyanin türevleri sunulmuştur. İlk olarak ftalonitril türevleri (2 ve 3) sentezlenmiştir. Bu ftalonitril türevleri florokarbon bileşiği içeren “4,4,5,5,5-pentafluoro-1-pentanol” periferal tetra substitüte (metalsiz 4, mangan(III) 5, nikel(II) 6 ve kobalt(II) 7) ve non-periferal tetra substitüte (magnezyum(II) 8, çinko(II) 9, nikel(II) 10 ve kobalt(II) 11) ftalosiyanin türevlerinin sentezinde kullanılmıştır. Sentezlenen yeni bileşikler FT-IR, 1H NMR 13C NMR, MALDI-TOF-MS and UV-Vis (ftalosiyaninler için) spektroskopi yöntemleri ile karakterize edilmiştir. Çalışmanın son kısmında, farklı çözücüler kullanılarak (THF, DMF, DMSO vb) çözücücnün Ni(II) (6 ve 10) ve Co(II) (7 ve 11) metalli ftalosiyanin kompleksleri üzerine agregasyon etkisi çalışıldı. Buna ilave olarak 2 x 10-6 ila 12 x 10-6 M arasında değişen farklı konsantrasyonlarda CHCl3 içerisinde Ni ve Co (6, 7, 10, 11) ftalosiyanin komplekslerinin agregasyon davranışları araştırıldı.

Project Number

2019.F90.02.02

References

  • Aktas Kamiloglu, A., Saka, E.T., Acar, I. and Tekintas, K. 2019. Synthesis, characterization, and photocatalytic activity of Co(II) and Cu(II) phthalocyanines linked with thiophene–Schiff base substituents for 4-nitrophenol oxidation, Journal of Coordination Chemistry, 72, 2778-2790.
  • Aktas Kamiloglu, A., Akyüz, D., Koca, A. and Acar, I. 2018. Synthesis and investigation of spectroelectrochemical properties of peripherally tetra-substituted phthalocyanine bearing 3-(4-{[3-(trifluoromethyl)benzyl]oxy}phenyl)propan-1-ol and its metallo compounds, Journal of Inclusion Phenomena and Macrocyclic Chemistry, 92, 223-235.
  • Erdogan, T., Bulut, M. and Çamur, M. 2015. Novel phthalocyanines bearing 7-oxy-3-(3,5-difluorophenyl)coumarin moieties: Synthesis, characterization, photophysical and photochemical properties, Journal of Photochemistry and Photobiology A: Chemistry,300, 6-14.
  • Ertem, B., Yalazan, H., Güngör, Ö., Sarkı, G., Durmuş, M., Saka, E.T. and Kantekin, H. 2018. Synthesis, structural characterization, and investigation on photophysical and photochemical features of new metallophthalocyanines, Journal of Luminescence 2018; 204: 464-471.
  • Gök, H.Z., Farsak, B., Keles, H. and Keles, M. 2014. Novel metal-free and metallophthalocyanines containing four 21-membered pentathiadiaza macrocycles: synthesis, characterization, and study of aggregation properties, Turk J. Chem., 38, 1073-1082.
  • Gök, Y., Gök, H.Z., Yılmaz, M.K, Farsak, M. and Karayigit, I.U. 2018. Novel peripherally and non-peripherally hydrobenzoin substituted optically active phthalocyanines: Synthesis, characterization, aggregation, electrochemical properties and catalytic applications, Polyhedron, 153,128-138.
  • Güreli, F.S., Orman, E.B., Salan, Ü., Özkaya, A. R. and Bulut, M. 2019. Synthesis, characterization, and electrochemical and in-situ spectroelectrochemical properties of novel peripherally and non-peripherally 7-oxy-3-(3,4-dimethoxyphenyl) coumarin substituted phthalocyanines, Dyes and Pigments, 160, 315-327.
  • Goslinski, T. and Piskorz, J. 2011. Fluorinated porphyrinoids and their biomedical applications, J. Photoch. Photobio. C Photochem. Rev., 12, 304-321.
  • Karaca, H. 2016. Redox chemistry, spectroelectrochemistry and catalytic activity of novel synthesized phthalocyanines bearing four schiff bases on the periphery, Journal of Organometallic Chemistry, 822, 39-45.
  • Lia, X., Zheng, B.D., Peng, X.H., Li, S.Z., Ying, J.W., Zhao, Y., Huang, J.D. and Yoon, J. 2019. Phthalocyanines as medicinal photosensitizers: Developments in the last five years. Coordination Chemistry Reviews, 379, 147-160.
  • Leznoff, C.C. and Lever, A.B.P. 1989-1996. Phthalocyanines, Properties and Applications, vols. 1-4. New York: VCH; 1989- 1996.
  • Mack, J. and Stillman, M.J. 2003. Electronic Structures of Metal Phthalocyanine and Porphyrin Complexes from Analysis of the UV-Visible Absorption and Magnetic Circular Dichroism Spectra and Molecular Orbital Calculations, The Porphyrin Handbook, Vol. 16, Academic Press, San Diego.
  • Mori, S. and Shibata, N. 2017. Synthesis and application of trifluoroethoxy-substituted phthalocyanines and subphthalocyanines, Beilstein J.Org.Chem.,13, 2273-2296.
  • Nyokong, T. 2010. Structure and Bonding: Functional Phthalocyanine Molecular Materials, series ed., D.M.P. Mingos, Springer, 135, 45-88.
  • Riquelme, J., Neira, K., Marco, J.F., Hermosilla-Ibáñez, P., Orellana, W., Zagal, J.H. and Tasca, F. 2018. Biomimicking vitamin B12. A Co phthalocyanine pyridine axial ligand coordinated catalyst for the oxygen reduction reaction, Electrochimica Acta, 265, 547-555.
  • Ochoa, A.L., Tempesti, T.C., Spesia, M.B., Milanesio, M.E. and Durantini, E.N. 2012. Synthesis and photodynamic properties of adamantylethoxy Zn(II) phthalocyanine derivatives in different media and in human red blood cells, Eur. J. Org. Chem., 50, 280-287.
  • Özçeşmeci, M., Özçeşmeci, I., Sorar, I. and Hamuryudan, E. 2017.Thin films of fluorinated groups substituted metallophthalocyanines as an optical material, Inorganic Chemistry Communications, 86, 209-212.
  • Suhailah, S.A. and Tamer, E.Y. 2018. Investigations on the antitumor activity of classical trifluoro-substituted zinc phthalocyanines derivatives, World Journal of Microbiology and Biotechnology, 34, 52.
  • Suzuki, A., Okumura, H., Yamasaki, Y. And Oku, T. 2019. Fabrication and characterization of perovskite type solar cells using phthalocyanine complexes, Applied Surface Science, 488, 586-592.
  • Schlettwein, D., Jaeger, N.I. and Oekermann, T. 2003. Photoelectrochemical Reactions at Phthalocyanine Electrodes, The Porphyrin Handbook, Academic Press, San Diego, Vol. 16.
  • Shibata, N., Das, B., Hayashi, M., Nakamura, S. and Toru, T. 2009. Synthesis, photophysical and electrochemical properties of perfluoroisoproply substituted binuclear phthalocyanine conjugated with a butadiyne linker, J. Fluorine Chem.,130, 1164-1170.
  • Saka, E.T. and Kahriman, N. 2019. (E)-4-(4-(3-(2-fluoro-5-(trifluoromethyl)phenyl)acryloyl)phenoxy)Substituted Co(II) and Cu(II) phthalocyanines and their catalytic activities on the oxidation of phenols, Journal of organometalic chem., 895, 48.
  • Tian, M., Wada, T. and Sasabe, H. 1197. Synthesis of unsymetrically substituted dodecakis(tirfluoroethoxy)phthalocyaninato vanadly complexes, J. Heterocycl. Chem., 34, 171.
  • Unluer, D., Aktas Kamiloglu, A., Direkel, S., Bektas, E., Kantekin, H. and Sancak, K. 2019. Synthesis and characterization of metallophthalocyanine with morpholine containing Schiff base and determination of their antimicrobial and antioxidant activities, Journal of Organometallic Chemistry, 900, 120936.
  • Weissbecker, J., Loas, A., Gorun, S.M. and Schlettwein, D. 2015. Switching of the Rate-limiting Step in the Electrochromic Reduction of Fluorinated Phthalocyanine Thin Films by Decreased Intermolecular Coupling, Electrochimica Acta, 157, 232–244.
  • Yanık, H., Aydın, D., Durmuş, M. and Ahsen, V. 2009. Peripheral and non-peripheral tetrasubstituted aluminium, gallium and indium phthalocyanines: Synthesis, photophysics and photochemistry, Journal of Photochemistry and Photobiology A: Chemistry, 206, 18-26.
There are 26 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Makaleler
Authors

Ayşe Aktaş Kamiloğlu 0000-0002-7347-4018

Project Number 2019.F90.02.02
Publication Date December 31, 2020
Published in Issue Year 2020

Cite

APA Aktaş Kamiloğlu, A. (2020). Fluorocarbon Substituted Peripherally and Non-Peripherally Tetra Phthalocyanine Compounds: Synthesis, Characterization and Aggregation Properties. Erzincan University Journal of Science and Technology, 13(3), 1158-1176. https://doi.org/10.18185/erzifbed.750043