Research Article
BibTex RIS Cite

Süperkapasitör elektrot için MnCo2S4 nanotellerin iki aşamalı sentezi

Year 2020, , 1228 - 1234, 31.12.2020
https://doi.org/10.18185/erzifbed.774284

Abstract

Bu çalışmada, MnCo2S4 nanoteller 3D-nikel köpük üzerinde hidrotermal yöntemle iki aşama da sentezlendi ve süperkapasitör elektrot malzemesi olarak araştırıldı. MnCo2S4 nanotellerinin kristal yapısı ve morfoloji analizleri yapıldı. Elektrokimyasal ölçümler 1 M potasyum hidroksit sulu elektrolit çözeltisi yapıldı. 0.5 A g−1 akım yoğunluğunda alınan GCD ölçümünden elde edilen spesifik kapasitans değeri 450 F g−1'dir. Ayrıca, numune 3000 şarj-deşarj döngüsünden sonra başlangıçtaki spesifik kapasitansın % 46'sını koruyarak iyi bir döngü kararlılığı gösterdi.

Supporting Institution

Erzincan Binali Yıldırım Üniversitesi

Project Number

FBA-2017-468

References

  • Beka, L. G., Li, X., Xia, X., & Liu, W. (2017). 3D flower-like CoNi2S4 grown on graphene decorated nickel foam as high performance supercapacitor. Diamond and Related Materials, 73, 169-176.
  • Burke, A. (2000). Ultracapacitors: why, how, and where is the technology. Journal of power sources, 91(1), 37-50.
  • Ghosh, D., & Das, C. K. (2015). Hydrothermal growth of hierarchical Ni3S2 and Co3S4 on a reduced graphene oxide hydrogel@ Ni foam: a high-energy-density aqueous asymmetric supercapacitor. ACS applied materials & interfaces, 7(2), 1122-1131.
  • Liu, S., & Jun, S. C. (2017). Hierarchical manganese cobalt sulfide core–shell nanostructures for high-performance asymmetric supercapacitors. Journal of Power Sources, 342, 629-637.
  • Moosavifard, S. E., Fani, S., & Rahmanian, M. (2016). Hierarchical CuCo2S4 hollow nanoneedle arrays as novel binder-free electrodes for high-performance asymmetric supercapacitors. Chemical Communications, 52(24), 4517-4520.
  • Nguyen, V. A., Lamiel, C., Shim, J. J. (2015). Hierarchical mesoporous graphene@ Ni-Co-S arrays on nickel foam for high-performance supercapacitors. Electrochimica Acta, 161, 351-357.
  • Peng, T., Qian, Z., Wang, J., Song, D., Liu, J., Liu, Q., & Wang, P. (2014). Construction of mass-controllable mesoporous NiCo2S4 electrodes for high performance supercapacitors. Journal of Materials Chemistry A, 2(45), 19376-19382.
  • Rolison, D. R., & Nazar, L. F. (2011). Electrochemical energy storage to power the 21st century. Mrs Bulletin, 36(7), 486-493.
  • Sahoo, S., & Rout, C. S. (2016). Facile electrochemical synthesis of porous manganese-cobalt-sulfide based ternary transition metal sulfide nanosheets architectures for high performance energy storage applications. Electrochimica Acta, 220, 57-66.
  • Simon, P., Gogotsi, Y., & Dunn, B. (2014). Where do batteries end and supercapacitors begin?. Science, 343(6176), 1210-1211.
  • Xu, X., Tian, X., Li, X., Yang, T., He, Y., Wang, K., ... & Liu, Z. (2019). Structural and chemical synergistic effect of NiCo2S4 nanoparticles and carbon cloth for high performance binder-free asymmetric supercapacitors. Applied Surface Science, 465, 635-642.
  • Yang, Z., Zhang, J., Kintner-Meyer, M. C., Lu, X., Choi, D., Lemmon, J. P., & Liu, J. (2011). Electrochemical energy storage for green grid. Chemical reviews, 111(5), 3577-3613.
  • Yu, M., Li, X., Ma, Y., Liu, R., Liu, J., & Li, S. (2017). Nanohoneycomb-like manganese cobalt sulfide/three dimensional graphene-nickel foam hybid electrodes for high-rate capability supercapacitors. Applied Surface Science, 396, 1816-1824.
  • Yu, Z., Tetard, L., Zhai, L., & Thomas, J. (2015). Supercapacitor electrode materials: nanostructures from 0 to 3 dimensions. Energy & Environmental Science, 8(3), 702-730.
  • Zhang, Y., Ma, M., Yang, J., Huang, W., & Dong, X. (2014). Graphene-based three-dimensional hierarchical sandwich-type architecture for high performance supercapacitors. RSC Advances, 4(17), 8466-8471.

Two-step synthesis of MnCo2S4 nanowires for supercapacitor electrode

Year 2020, , 1228 - 1234, 31.12.2020
https://doi.org/10.18185/erzifbed.774284

Abstract

In this study, MnCo2S4 nanowires were synthesized on 3D-Ni foam by the hydrothermal process in two-step and investigated as supercapacitor electrode material. Crystal structure and morphology analyzes of MnCo2S4 nanowires were performed. Electrochemical measurements were taken in 1 M of a potassium hydroxide aqueous electrolyte solution. The specific capacitance value calculated from GCD measurement taken at a current density of 0.5 A g−1 from the sample was 450 F g−1. Furthermore, the sample have good cycling stability by keeping 46% of the initial specific capacitance after 3000 cycles.

Project Number

FBA-2017-468

References

  • Beka, L. G., Li, X., Xia, X., & Liu, W. (2017). 3D flower-like CoNi2S4 grown on graphene decorated nickel foam as high performance supercapacitor. Diamond and Related Materials, 73, 169-176.
  • Burke, A. (2000). Ultracapacitors: why, how, and where is the technology. Journal of power sources, 91(1), 37-50.
  • Ghosh, D., & Das, C. K. (2015). Hydrothermal growth of hierarchical Ni3S2 and Co3S4 on a reduced graphene oxide hydrogel@ Ni foam: a high-energy-density aqueous asymmetric supercapacitor. ACS applied materials & interfaces, 7(2), 1122-1131.
  • Liu, S., & Jun, S. C. (2017). Hierarchical manganese cobalt sulfide core–shell nanostructures for high-performance asymmetric supercapacitors. Journal of Power Sources, 342, 629-637.
  • Moosavifard, S. E., Fani, S., & Rahmanian, M. (2016). Hierarchical CuCo2S4 hollow nanoneedle arrays as novel binder-free electrodes for high-performance asymmetric supercapacitors. Chemical Communications, 52(24), 4517-4520.
  • Nguyen, V. A., Lamiel, C., Shim, J. J. (2015). Hierarchical mesoporous graphene@ Ni-Co-S arrays on nickel foam for high-performance supercapacitors. Electrochimica Acta, 161, 351-357.
  • Peng, T., Qian, Z., Wang, J., Song, D., Liu, J., Liu, Q., & Wang, P. (2014). Construction of mass-controllable mesoporous NiCo2S4 electrodes for high performance supercapacitors. Journal of Materials Chemistry A, 2(45), 19376-19382.
  • Rolison, D. R., & Nazar, L. F. (2011). Electrochemical energy storage to power the 21st century. Mrs Bulletin, 36(7), 486-493.
  • Sahoo, S., & Rout, C. S. (2016). Facile electrochemical synthesis of porous manganese-cobalt-sulfide based ternary transition metal sulfide nanosheets architectures for high performance energy storage applications. Electrochimica Acta, 220, 57-66.
  • Simon, P., Gogotsi, Y., & Dunn, B. (2014). Where do batteries end and supercapacitors begin?. Science, 343(6176), 1210-1211.
  • Xu, X., Tian, X., Li, X., Yang, T., He, Y., Wang, K., ... & Liu, Z. (2019). Structural and chemical synergistic effect of NiCo2S4 nanoparticles and carbon cloth for high performance binder-free asymmetric supercapacitors. Applied Surface Science, 465, 635-642.
  • Yang, Z., Zhang, J., Kintner-Meyer, M. C., Lu, X., Choi, D., Lemmon, J. P., & Liu, J. (2011). Electrochemical energy storage for green grid. Chemical reviews, 111(5), 3577-3613.
  • Yu, M., Li, X., Ma, Y., Liu, R., Liu, J., & Li, S. (2017). Nanohoneycomb-like manganese cobalt sulfide/three dimensional graphene-nickel foam hybid electrodes for high-rate capability supercapacitors. Applied Surface Science, 396, 1816-1824.
  • Yu, Z., Tetard, L., Zhai, L., & Thomas, J. (2015). Supercapacitor electrode materials: nanostructures from 0 to 3 dimensions. Energy & Environmental Science, 8(3), 702-730.
  • Zhang, Y., Ma, M., Yang, J., Huang, W., & Dong, X. (2014). Graphene-based three-dimensional hierarchical sandwich-type architecture for high performance supercapacitors. RSC Advances, 4(17), 8466-8471.
There are 15 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Makaleler
Authors

Yaşar Özkan Yeşilbağ 0000-0002-2519-3078

Project Number FBA-2017-468
Publication Date December 31, 2020
Published in Issue Year 2020

Cite

APA Yeşilbağ, Y. Ö. (2020). Two-step synthesis of MnCo2S4 nanowires for supercapacitor electrode. Erzincan University Journal of Science and Technology, 13(3), 1228-1234. https://doi.org/10.18185/erzifbed.774284