Research Article
BibTex RIS Cite

Electrical Characterization of 6H-SiC/MEH-PPV/Al Schottky Diode by Current-Voltage Method in A Wide Temperature Range

Year 2021, , 79 - 92, 31.03.2021
https://doi.org/10.18185/erzifbed.870828

Abstract

Schottky diode with 6H-SiC/MEH-PPV/Al polymer interface was prepared and characterized by using current-voltage data in the temperature range of 80-400K. Important parameters of the produced diode such as ideality factor, barrier height and saturation current were calculated. In addition, the series resistance of the diode was calculated using Cheung and Norde methods. In addition, the calculated diode characteristics were discussed by comparing with each other and with the literature. Strong dependence of the calculated characteristics on temperature has been determined.

References

  • 1. Kosyachenko, L., V. Sklyarchuk, and Y.F. Sklyarchuk, Electrical and photoelectric properties of Au–SiC Schottky barrier diodes. Solid-State Electronics, 1998. 42(1): p. 145-151.
  • 2. Zhao, J.H., K. Sheng, and R.C. Lebron-Velilla, Silicon carbide schottky barrier diode. Sic Materials And Devices: Volume 1, 2006: p. 117-162.
  • 3. Neudeck, P.G., Silicon carbide technology. The VLSI handbook, 2006. 20061800.
  • 4. Vali, I.P., et al., Electron and gamma irradiation effects on Al/n‒4H–SiC Schottky contacts. Vacuum, 2020. 172: p. 109068.
  • 5. Wang, X., et al., Analysis of 600 V/650 V SiC schottky diodes at extremely high temperatures. CPSS Transactions on Power Electronics and Applications, 2020. 5(1): p. 11-17.
  • 6. Belous, A., Power Electronics Devices Based on Wide-Gap Semiconductors, in Handbook of Microwave and Radar Engineering. 2021, Springer. p. 389-435.
  • 7. Sciuto, A., et al., UV-A sensor based on 6H-SiC Schottky photodiode. IEEE Photonics Journal, 2017. 9(1): p. 1-10.
  • 8. Zaťko, B., et al., Study of Schottky barrier detectors based on a high quality 4H-SiC epitaxial layer with different thickness. Applied Surface Science, 2021. 536: p. 147801.
  • 9. Bernat, R., et al., Response of 4H-SiC Detectors to Ionizing Particles. Crystals, 2021. 11(1): p. 10.
  • 10. Bodie, C., G. Lioliou, and A. Barnett, Hard X-ray and γ-ray spectroscopy at high temperatures using a COTS SiC photodiode. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2021. 985: p. 164663.
  • 11. Rhoderick, E. and R. Williams, Metal-Semiconductor Contacts. 1988. Clarendon. 1988, Oxford.
  • 12. Cheung, S. and N. Cheung, Extraction of Schottky diode parameters from forward current‐voltage characteristics. Applied physics letters, 1986. 49(2): p. 85-87.
  • 13. Gülen, Y., et al., Schottky barrier height modification in Au/n-type 6H–SiC structures by PbS interfacial layer. Microelectronic engineering, 2011. 88(2): p. 179-182.
  • 14. Sevim, A.O. and S. Mutlu, Post-fabrication electric field and thermal treatment of polymer light emitting diodes and their photovoltaic properties. Organic Electronics, 2009. 10(1): p. 18-26.
  • 15. Aydin, M.E., et al., Electrical characterization of Al/MEH-PPV/p-Si Schottky diode by current–voltage and capacitance–voltage methods. Physica B: Condensed Matter, 2007. 387(1-2): p. 239-244.
  • 16. Altan, H., M. Özer, and H. Ezgin, Investigation of electrical parameters of Au/P3HT: PCBM/n-6H–SiC/Ag Schottky barrier diode with different current conduction models. Superlattices and Microstructures, 2020. 146: p. 106658.
  • 17. Felix, J., et al., Investigation of deep-level defects in conductive polymer on n-type 4H-and 6H-silicon carbide substrates using IV and deep level transient spectroscopy techniques. Journal of Applied Physics, 2012. 112(1): p. 014505.
  • 18. Felix, J.F., et al., Effect of gamma radiation on the electrical properties of Polyaniline/silicon carbide heterojunctions. Radiation measurements, 2014. 71: p. 402-406.
  • 19. Kavasoglu, A.S., et al., The analysis of the charge transport mechanism of n-Si/MEH-PPV device structure using forward bias I–V–T characteristics. Journal of alloys and compounds, 2010. 492(1-2): p. 421-426.
  • 20. Zhu, M., T. Cui, and K. Varahramyan, Experimental and theoretical investigation of MEH-ppv based Schottky diodes. Microelectronic Engineering, 2004. 75(3): p. 269-274.
  • 21. Pham, H., et al., Temperature-dependent electrical characteristics and extraction of Richardson constant from graphitic-C/n-type 6H-SiC Schottky diodes. Journal of Electronic Materials, 2019. 48(4): p. 2061-2066.
  • 22. Padma, R. and V.R. Reddy, Electrical properties of Ir/n-InGaN/Ti/Al Schottky barrier diode in a wide temperature range. Adv Mater Lett, 2014. 5: p. 31-38.
  • 23. Quan, D.T. and H. Hbib, High barrier height Au/n-type InP Schottky contacts with a POxNyHz interfacial layer. Solid-state electronics, 1993. 36(3): p. 339-344.
  • 24. Aydoğan, Ş., M. Sağlam, and A. Türüt, The effects of the temperature on the some parameters obtained from current–voltage and capacitance–voltage characteristics of polypyrrole/n-Si structure. Polymer, 2005. 46(2): p. 563-568.
  • 25. Mamor, M., Interface gap states and Schottky barrier inhomogeneity at metal/n-type GaN Schottky contacts. Journal of Physics: Condensed Matter, 2009. 21(33): p. 335802.
  • 26. Aydoğan, Ş., M. Sağlam, and A. Türüt, Some electrical properties of polyaniline/p-Si/Al structure at 300 K and 77 K temperatures. Microelectronic Engineering, 2008. 85(2): p. 278-283.
  • 27. Tung, R.T., Recent advances in Schottky barrier concepts. Materials Science and Engineering: R: Reports, 2001. 35(1-3): p. 1-138. 28. Leroy, W., et al., The barrier height inhomogeneity in identically prepared Au/n-GaAs Schottky barrier diodes. Solid-state electronics, 2005. 49(6): p. 878-883.
  • 29. Güzel, T., A.K. Bilgili, and M. Özer, Investigation of inhomogeneous barrier height for Au/n-type 6H-SiC Schottky diodes in a wide temperature range. Superlattices and Microstructures, 2018. 124: p. 30-40.
  • 30. Davydov, S.Y., A simple model for calculating the height of Schottky barriers at contacts of transition metals with silicon carbide polytypes. Physics of the Solid State, 2004. 46(12): p. 2207-2212.
  • 31. Zetterling, C.-M., et al., Junction barrier Schottky diodes in 6H SiC. Solid-State Electronics, 1998. 42(9): p. 1757-1759.
  • 32. Vearey-Roberts, A. and D. Evans, Modification of GaAs Schottky diodes by thin organic interlayers. Applied Physics Letters, 2005. 86(7): p. 072105.
  • 33. Bolognesi, A., et al., Experimental investigation and simulation of hybrid organic/inorganic Schottky diodes. Journal of Physics: Condensed Matter, 2003. 15(38): p. S2719.
  • 34. Zahn, D.R., T.U. Kampen, and H. Méndez, Transport gap of organic semiconductors in organic modified Schottky contacts. Applied surface science, 2003. 212: p. 423-427.
  • 35. Güzel, T., 6H-SiC Tabanlı Schottky Diyotların Hazırlanması ve Geniş Sıcaklık Aralığında Elektriksel Parametrelerinin İncelenmesi, in Fen Bilimleri Enstitüsü 2015, Gazi Üniversitesi. p. 126.
  • 36. Duman, S., et al., Determination of contact parameters of Ni/n-GaP Schottky contacts. Microelectronics Reliability, 2012. 52(6): p. 1005-1011.
  • 37. Chand, S. and J. Kumar, Current transport in Pd 2 Si/n-Si (100) Schottky barrier diodes at low temperatures. Applied Physics A, 1996. 63(2): p. 171-178.
  • 38. Çınar, K., et al., The effect of the electron irradiation on the series resistance of Au/Ni/6H-SiC and Au/Ni/4H-SiC Schottky contacts. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 2010. 268(6): p. 616-621.
  • 39. Asubay, S., M.F. Genisel, and Y.S. Ocak, Electrical parameters of a DC sputtered Mo/n-type 6H-SiC Schottky barrier diode. Materials science in semiconductor processing, 2014. 28: p. 94-97.
  • 40. Zhang, Q., et al., Comparison of current-voltage characteristics of n-and p-type 6H-SiC Schottky diodes. Journal of electronic materials, 2001. 30(3): p. 196-201.
  • 41. Aydoğan, Ş., et al., Extraction of electronic parameters of Schottky diode based on an organic Indigotindisulfonate Sodium (IS). Solid state communications, 2010. 150(33-34): p. 1592-1596.

6H-SiC/MEH-PPV/Al Schottky Diyotunun Geniş Bir Sıcaklık Aralığında Akım-Gerilim Ölçümleri İle Elektriksel Karakterizasyonu

Year 2021, , 79 - 92, 31.03.2021
https://doi.org/10.18185/erzifbed.870828

Abstract

Bu çalışmada, 6H-SiC/MEH-PPV/Al polimer ara yüzlü Schottky diyotu üretilmiş ve 80-400 K sıcaklık aralığında akım-voltaj verileri kullanılarak karakterize edilmiştir. Üretimi yapılan diyotun İdealite faktörü, engel yüksekliği gibi önemli parametreleri akım-voltaj ölçümlerinden hesaplanmıştır. Doyma akımı ise deneysel sonuçlardan elde edilen grafiklerden belirlenmiştir. Ayrıca diyotun seri direnci Cheung ve Norde yöntemleri kullanılarak hesaplanmıştır. Diğer yandan hesaplanan diyot özellikleri birbirleri ve literatür ile karşılaştırılarak tartışılmıştır. Hesaplanan özelliklerin sıcaklığa güçlü bir şekilde bağlı olduğu belirlenmiştir.

References

  • 1. Kosyachenko, L., V. Sklyarchuk, and Y.F. Sklyarchuk, Electrical and photoelectric properties of Au–SiC Schottky barrier diodes. Solid-State Electronics, 1998. 42(1): p. 145-151.
  • 2. Zhao, J.H., K. Sheng, and R.C. Lebron-Velilla, Silicon carbide schottky barrier diode. Sic Materials And Devices: Volume 1, 2006: p. 117-162.
  • 3. Neudeck, P.G., Silicon carbide technology. The VLSI handbook, 2006. 20061800.
  • 4. Vali, I.P., et al., Electron and gamma irradiation effects on Al/n‒4H–SiC Schottky contacts. Vacuum, 2020. 172: p. 109068.
  • 5. Wang, X., et al., Analysis of 600 V/650 V SiC schottky diodes at extremely high temperatures. CPSS Transactions on Power Electronics and Applications, 2020. 5(1): p. 11-17.
  • 6. Belous, A., Power Electronics Devices Based on Wide-Gap Semiconductors, in Handbook of Microwave and Radar Engineering. 2021, Springer. p. 389-435.
  • 7. Sciuto, A., et al., UV-A sensor based on 6H-SiC Schottky photodiode. IEEE Photonics Journal, 2017. 9(1): p. 1-10.
  • 8. Zaťko, B., et al., Study of Schottky barrier detectors based on a high quality 4H-SiC epitaxial layer with different thickness. Applied Surface Science, 2021. 536: p. 147801.
  • 9. Bernat, R., et al., Response of 4H-SiC Detectors to Ionizing Particles. Crystals, 2021. 11(1): p. 10.
  • 10. Bodie, C., G. Lioliou, and A. Barnett, Hard X-ray and γ-ray spectroscopy at high temperatures using a COTS SiC photodiode. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2021. 985: p. 164663.
  • 11. Rhoderick, E. and R. Williams, Metal-Semiconductor Contacts. 1988. Clarendon. 1988, Oxford.
  • 12. Cheung, S. and N. Cheung, Extraction of Schottky diode parameters from forward current‐voltage characteristics. Applied physics letters, 1986. 49(2): p. 85-87.
  • 13. Gülen, Y., et al., Schottky barrier height modification in Au/n-type 6H–SiC structures by PbS interfacial layer. Microelectronic engineering, 2011. 88(2): p. 179-182.
  • 14. Sevim, A.O. and S. Mutlu, Post-fabrication electric field and thermal treatment of polymer light emitting diodes and their photovoltaic properties. Organic Electronics, 2009. 10(1): p. 18-26.
  • 15. Aydin, M.E., et al., Electrical characterization of Al/MEH-PPV/p-Si Schottky diode by current–voltage and capacitance–voltage methods. Physica B: Condensed Matter, 2007. 387(1-2): p. 239-244.
  • 16. Altan, H., M. Özer, and H. Ezgin, Investigation of electrical parameters of Au/P3HT: PCBM/n-6H–SiC/Ag Schottky barrier diode with different current conduction models. Superlattices and Microstructures, 2020. 146: p. 106658.
  • 17. Felix, J., et al., Investigation of deep-level defects in conductive polymer on n-type 4H-and 6H-silicon carbide substrates using IV and deep level transient spectroscopy techniques. Journal of Applied Physics, 2012. 112(1): p. 014505.
  • 18. Felix, J.F., et al., Effect of gamma radiation on the electrical properties of Polyaniline/silicon carbide heterojunctions. Radiation measurements, 2014. 71: p. 402-406.
  • 19. Kavasoglu, A.S., et al., The analysis of the charge transport mechanism of n-Si/MEH-PPV device structure using forward bias I–V–T characteristics. Journal of alloys and compounds, 2010. 492(1-2): p. 421-426.
  • 20. Zhu, M., T. Cui, and K. Varahramyan, Experimental and theoretical investigation of MEH-ppv based Schottky diodes. Microelectronic Engineering, 2004. 75(3): p. 269-274.
  • 21. Pham, H., et al., Temperature-dependent electrical characteristics and extraction of Richardson constant from graphitic-C/n-type 6H-SiC Schottky diodes. Journal of Electronic Materials, 2019. 48(4): p. 2061-2066.
  • 22. Padma, R. and V.R. Reddy, Electrical properties of Ir/n-InGaN/Ti/Al Schottky barrier diode in a wide temperature range. Adv Mater Lett, 2014. 5: p. 31-38.
  • 23. Quan, D.T. and H. Hbib, High barrier height Au/n-type InP Schottky contacts with a POxNyHz interfacial layer. Solid-state electronics, 1993. 36(3): p. 339-344.
  • 24. Aydoğan, Ş., M. Sağlam, and A. Türüt, The effects of the temperature on the some parameters obtained from current–voltage and capacitance–voltage characteristics of polypyrrole/n-Si structure. Polymer, 2005. 46(2): p. 563-568.
  • 25. Mamor, M., Interface gap states and Schottky barrier inhomogeneity at metal/n-type GaN Schottky contacts. Journal of Physics: Condensed Matter, 2009. 21(33): p. 335802.
  • 26. Aydoğan, Ş., M. Sağlam, and A. Türüt, Some electrical properties of polyaniline/p-Si/Al structure at 300 K and 77 K temperatures. Microelectronic Engineering, 2008. 85(2): p. 278-283.
  • 27. Tung, R.T., Recent advances in Schottky barrier concepts. Materials Science and Engineering: R: Reports, 2001. 35(1-3): p. 1-138. 28. Leroy, W., et al., The barrier height inhomogeneity in identically prepared Au/n-GaAs Schottky barrier diodes. Solid-state electronics, 2005. 49(6): p. 878-883.
  • 29. Güzel, T., A.K. Bilgili, and M. Özer, Investigation of inhomogeneous barrier height for Au/n-type 6H-SiC Schottky diodes in a wide temperature range. Superlattices and Microstructures, 2018. 124: p. 30-40.
  • 30. Davydov, S.Y., A simple model for calculating the height of Schottky barriers at contacts of transition metals with silicon carbide polytypes. Physics of the Solid State, 2004. 46(12): p. 2207-2212.
  • 31. Zetterling, C.-M., et al., Junction barrier Schottky diodes in 6H SiC. Solid-State Electronics, 1998. 42(9): p. 1757-1759.
  • 32. Vearey-Roberts, A. and D. Evans, Modification of GaAs Schottky diodes by thin organic interlayers. Applied Physics Letters, 2005. 86(7): p. 072105.
  • 33. Bolognesi, A., et al., Experimental investigation and simulation of hybrid organic/inorganic Schottky diodes. Journal of Physics: Condensed Matter, 2003. 15(38): p. S2719.
  • 34. Zahn, D.R., T.U. Kampen, and H. Méndez, Transport gap of organic semiconductors in organic modified Schottky contacts. Applied surface science, 2003. 212: p. 423-427.
  • 35. Güzel, T., 6H-SiC Tabanlı Schottky Diyotların Hazırlanması ve Geniş Sıcaklık Aralığında Elektriksel Parametrelerinin İncelenmesi, in Fen Bilimleri Enstitüsü 2015, Gazi Üniversitesi. p. 126.
  • 36. Duman, S., et al., Determination of contact parameters of Ni/n-GaP Schottky contacts. Microelectronics Reliability, 2012. 52(6): p. 1005-1011.
  • 37. Chand, S. and J. Kumar, Current transport in Pd 2 Si/n-Si (100) Schottky barrier diodes at low temperatures. Applied Physics A, 1996. 63(2): p. 171-178.
  • 38. Çınar, K., et al., The effect of the electron irradiation on the series resistance of Au/Ni/6H-SiC and Au/Ni/4H-SiC Schottky contacts. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 2010. 268(6): p. 616-621.
  • 39. Asubay, S., M.F. Genisel, and Y.S. Ocak, Electrical parameters of a DC sputtered Mo/n-type 6H-SiC Schottky barrier diode. Materials science in semiconductor processing, 2014. 28: p. 94-97.
  • 40. Zhang, Q., et al., Comparison of current-voltage characteristics of n-and p-type 6H-SiC Schottky diodes. Journal of electronic materials, 2001. 30(3): p. 196-201.
  • 41. Aydoğan, Ş., et al., Extraction of electronic parameters of Schottky diode based on an organic Indigotindisulfonate Sodium (IS). Solid state communications, 2010. 150(33-34): p. 1592-1596.
There are 40 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Makaleler
Authors

Tamer Güzel 0000-0003-3870-7223

Publication Date March 31, 2021
Published in Issue Year 2021

Cite

APA Güzel, T. (2021). Electrical Characterization of 6H-SiC/MEH-PPV/Al Schottky Diode by Current-Voltage Method in A Wide Temperature Range. Erzincan University Journal of Science and Technology, 14(1), 79-92. https://doi.org/10.18185/erzifbed.870828