Research Article
BibTex RIS Cite

Investigation of Schiff Bases Containing Acryloyl Moiety as Ionophore in Potentiometric Ion-Selective Sensors

Year 2021, , 664 - 676, 31.08.2021
https://doi.org/10.18185/erzifbed.951061

Abstract

Bu çalışmada, yeni sentezlenen iyonoforlar kullanılarak tümüyle katı-hal krom (III)-seçici potansiyometrik polivinil klorür (PVC) membran sensör geliştirildi. Bu amaçla yeni sentezlenen akriloil grup içeren (E)-4-(4-Nitro fenilimino) metil fenil akrilat (A1), (E)-4-(4-kloro fenilimino) metil fenil akrilat (A2) ve (E)-4-(4-hidroksibenzil dimino) benzoik asit akrilat (A3) schiff bazları iyonofor olarak kullanıldı. En uygun potansiyometrik özelliklere sahip membran bileşimi farklı oranlarda iyonoforlar (A1, A2 ve A3), plastikleştiriciler (o-nitrofeniloktil eter (o-NPOE)), bis (2-etilheksil) sebekat (DOS), dibutil ftalat (DBP) dioktil ftalat (DOP) ve PVC kullanılarak belirlendi. Ayrıca, potasyum tetrakisparaklorofenil borat (KTpClPB) ve sodyum tetrafenil borat (NaTPB) elektrotlarının doğrusal çalışma aralığına ve eğimine her onkat’lık iyon aktivitesi değişimine karşı etkisi de araştırıldı. Geliştirilen krom (III)-seçici sensör için % 1,0 A2 bileşiği, % 67,0 (a/a) o-NPOE ve % 32,0 (a/a) PVC oranları en uygun membran bileşimi olarak belirlendi. Geliştirilen krom (III)-seçici sensör pH 3,50’de 1,3×10-7−1,0×10-1 M konsantrasyon aralığında standart krom (III) iyon çözeltisine karşı doğrusal cevap sergiledi (R2= 0,9938). Sensör ile doğrusal çalışma aralığındaki her onkat’lık standart krom (III) konsantrasyon değişiminin ortalaması 27,12±0,81 mV’luk eğim değeri, tekrarlanabilir potansiyeller elde edildi. Geliştirilen tümüyle katı-hal krom (III)-seçici potansiyometrik PVC membran sensörün tayin limiti 6,3×10-8 M ve cevap süresi ≤10 s olarak belirlendi. Yaygın bazı katyon türlerinin geliştirilen sensör üzerindeki girişim etkileri incelendi. Önerilen sensörün analitik olarak kullanılıp kullanılamayacağını araştırmak için, gerçek numunelerde krom (III) iyonunun potansiyometrik tayini gerçekleştirildi. Elde edilen sonuçlar indüktif olarak eşleştirilmiş kütle spektrometresi (ICP-MS) metodu ile elde edilen verilerle istatiksel olarak karşılaştırıldı.

References

  • Abbaspour, A., Izadyar, A., (2001). Chromium (III) ion-selective electrode based on 4-dimethylaminoazobenzene, Talanta, 53: 1009-1013.
  • Altunay, N., Yıldırım, E., & Gürkan, R. (2018). Extraction and preconcentration of trace Al and Cr from vegetable samples by vortex-assisted ionic liquid-based dispersive liquid–liquid microextraction prior to atomic absorption spectrometric determination, Food chemistry, 245, 586-594.
  • Awad, A.T., Amr L.S., Gehad, G.M., Tahani, M.B., (2014). Determination of Cr (III) ions in Different Water Samples Using Chromium (III)-sensor based on N-[4-(dimethylamino) benzylidene]-6-nitro-1,3-benzothiazol-2-amine, Int. J. Electrochem. Sci., 9: 4932-4943.
  • Buck, R. P., & Lindner, E. (1994). Recommendations for nomenclature of ion-selective electrodes (IUPAC Recommendations 1994), Pure and Applied Chemistry, 66(12), 2527-2536.
  • Divrikli, U., Soylak, M., & Elci, L. (2008). Determination of total chromium by flame atomic absorption spectrometry after coprecipitation by cerium (IV) hydroxide, Environmental monitoring and assessment, 138(1), 167-172.
  • Elavarasi, M., Alex, S. A., Chandrasekaran, N., & Mukherjee, A. (2014). Simple fluorescence-based detection of Cr (III) and Cr (VI) using unmodified gold nanoparticles, Analytical Methods, 6(24), 9554-9560.
  • Fekri, M., Khanmohammadi, H., Darvishpour, M., (2011). An electrochemical Cr (III)-Selective Sensor-Based on a Newly Synthesized Ligand and Optimization of Electrode With a Nano Particle, International Journal of electrochemical science, 1679-1685.
  • Gadzekpo, V.P.Y., Christian, G.D., (1984). Determination of selectivity coefficients of ion selective electrodes by a matched potential method, Analytica Chimica Acta, 164: 279-282.
  • Ganjali, M.R., Mizani, F., Salavati-Niasari, M., and Javanbakht, M., (2003). Novel Potentiometric Membrane Sensor for the Determination of Trace Amounts of Chromium (III) Ions, Analytical Sciences, 19:235-238.
  • Ganjali, M.R., Norouzi, P., Faridbod, F., Ghorbani, M., Adib, M., (2006). Highly selective and sensitive chromium (III) membrane sensors based on a new tridentate Schiff’s base, Analytica Chimica Acta, 569: 35-41.
  • Gholivand, M., Sharifpour, F., (2003). Chromium (III) ion selective electrode based on glyoxal bis(2-hydroxyanil), Talanta,707-713.
  • Gupta, V.K., Jain, A.K., Kumar, P., Agarwal, S., Maheshwari, G., (2006). Chromium (III)-selective sensor based on tri-o-thymotide in PVC matrix, Sensors and Actuators B, 113: 182-186.
  • Hamilton, E. M., Young, S. D., Bailey, E. H., & Watts, M. J. (2018). Chromium speciation in foodstuffs: A review, Food chemistry, 250, 105-112.
  • Heidari, Z., Masrournia, M., & Khoshnood, R. S. (2016). Fabrication a composite electrode based on MWCNT/Zeolite for potentiometric determination of Cr3+, Oriental Journal of Chemistry, 32(1), 627.
  • Kaur, V., & Malik, A. K. (2009). Speciation of chromium metal ions by RP-HPLC, Journal of chromatographic science, 47(3), 238-242.
  • Khound, N. J., Phukon, P., & Bhattacharyya, K. G. (2019). Toxic Trace Metals in the Surface Water Sources of Jia–Bharali river basin, North Brahmaputra Plain, India-A Hydrochemical Elucidation, Water Resources, 46(1), 117-127.
  • Kimbrough, D. E., Cohen, Y., Winer, A. M., Creelman, L., & Mabuni, C. (1999). A critical assessment of chromium in the environment, Critical reviews in environmental science and technology, 29(1), 1-46.
  • Kumar, K. G., & Muthuselvi, R. (2006). Spectrophotometric determination of chromium (III) with 2-hydroxybenzaldiminoglycine, Journal of Analytical Chemistry, 61(1), 28-31.
  • Kumar, P., Sharma, H. K., & Shalaan, K. G. (2013). Development of chromium (III) selective potentiometric sensor by using synthesized triazole derivative as an ionophore, Journal of Chemistry, 2013.
  • McIver, D. J., Grizales, A. M., Brownstein, J. S., & Goldfine, A. B. (2015). Risk of type 2 diabetes is lower in US adults taking chromium-containing supplements, The Journal of nutrition, 145(12), 2675-2682.
  • Michalski, R. (2005). Trace level determination of Cr (III)/Cr (VI) in water samples using ion chromatography with UV detection, Journal of liquid chromatography & related technologies, 28(18), 2849-2862.
  • National Research Council (1989). Recommended dietary allowances, 10th ed., National Academy Press, Washington, DC, USA.
  • Pettine, M., Campanella, L., Millero, F.J., (2002). Reduction of hexavalent chromium by H2O2 in acidic solutions, Environmental Science and Technology, 36: 901.
  • Sharma, R.K., and Goel, A., (2005). Development of a Cr(III)-specific potentiometric sensor using Aurin tricarboxylic acid modified silica, Analytica Chimica Acta, 534: 137-142.
  • Sılku, P., Özkınalı, S., Öztürk, Z., Asan, A., & Köse, D. A. (2016). Synthesis of novel Schiff Bases containing acryloyl moiety and the investigation of spectroscopic and electrochemical properties, Journal of Molecular Structure, 1116, 72-83.
  • Sun, Z., & Liang, P. (2008). Determination of Cr (III) and total chromium in water samples by cloud point extraction and flame atomic absorption spectrometry, Microchimica Acta, 162(1-2), 121-125.
  • Wilson, P. B. (2019). Population‐representative analysis of dietary supplementation among Americans with diabetes mellitus, Journal of diabetes, 11(2), 115-121.
  • Zamani, H., Ghadier, R., Ganjali, M.R., (2006). Highly selective and sensitive chromium (III) membrane sensors based on 4-amino-3-hydrazino-6-methyl-1,2,4-triazin-5-one as a new neutral ionophore, Sensors and Actuators B, 119: 41-46.
  • Zhao, Y., & Han, G. (1994). Rapid spectrophotometric determination of chromium (III), Talanta, 41(8), 1247-1250.

Akriloil Grup İçeren Schiff Bazlarının Potansiyometrik İyon-Seçici Sensörlerde İyonofor Olarak Kullanımının Araştırılması

Year 2021, , 664 - 676, 31.08.2021
https://doi.org/10.18185/erzifbed.951061

Abstract

Bu çalışmada, yeni sentezlenen iyonoforlar kullanılarak tümüyle katı-hal krom (III)-seçici potansiyometrik polivinil klorür (PVC) membran sensör geliştirildi. Bu amaçla yeni sentezlenen akriloil grup içeren (E)-4-(4-Nitro fenilimino) metil fenil akrilat (A1), (E)-4-(4-kloro fenilimino) metil fenil akrilat (A2) ve (E)-4-(4-hidroksibenzil dimino) benzoik asit akrilat (A3) schiff bazları iyonofor olarak kullanıldı. En uygun potansiyometrik özelliklere sahip membran bileşimi farklı oranlarda iyonoforlar (A1, A2 ve A3), plastikleştiriciler (o-nitrofeniloktil eter (o-NPOE)), bis (2-etilheksil) sebekat (DOS), dibutil ftalat (DBP), dioktil ftalat (DOP) ve PVC kullanılarak belirlendi. Ayrıca, optimum membran kompozisyonunu belirlemek için iyonik katkı maddesi olarak potasyum tetrakis(4-klorofenil) borat (KTpClPB) ve sodyum tetrafenilboratın (NaTPB) etkisi araştırıldı. Geliştirilen krom (III)-seçici sensör için % 1,0 A2 bileşiği, % 67,0 (a/a) o-NPOE ve % 32,0 (a/a) PVC oranları en uygun membran bileşimi olarak belirlendi. Geliştirilen krom (III)-seçici sensör pH 3,50’de 1,3×10-7−1,0×10-1 M konsantrasyon aralığında standart krom (III) iyon çözeltisine karşı doğrusal cevap sergiledi (R2= 0,9938). Sensör ile doğrusal çalışma aralığındaki her onkat’lık standart krom (III) konsantrasyon değişiminin ortalaması 27,1 ± 0,8 mV’luk eğim değeri, tekrarlanabilir potansiyeller elde edildi. Geliştirilen tümüyle katı-hal krom (III)-seçici potansiyometrik PVC membran sensörün tayin limiti 6,3×10-8 M ve cevap süresi ≤10 s olarak belirlendi. Yaygın bazı katyon türlerinin geliştirilen sensör üzerindeki girişim etkileri incelendi. Önerilen sensörün analitik olarak kullanılıp kullanılamayacağını araştırmak için, gerçek numunelerde krom (III) iyonunun potansiyometrik tayini gerçekleştirildi. Elde edilen sonuçlar İndüktif Eşleşmiş Plazma-Kütle Spektrometrisi (ICP-MS) metodu ile elde edilen verilerle istatiksel olarak karşılaştırıldı.



References

  • Abbaspour, A., Izadyar, A., (2001). Chromium (III) ion-selective electrode based on 4-dimethylaminoazobenzene, Talanta, 53: 1009-1013.
  • Altunay, N., Yıldırım, E., & Gürkan, R. (2018). Extraction and preconcentration of trace Al and Cr from vegetable samples by vortex-assisted ionic liquid-based dispersive liquid–liquid microextraction prior to atomic absorption spectrometric determination, Food chemistry, 245, 586-594.
  • Awad, A.T., Amr L.S., Gehad, G.M., Tahani, M.B., (2014). Determination of Cr (III) ions in Different Water Samples Using Chromium (III)-sensor based on N-[4-(dimethylamino) benzylidene]-6-nitro-1,3-benzothiazol-2-amine, Int. J. Electrochem. Sci., 9: 4932-4943.
  • Buck, R. P., & Lindner, E. (1994). Recommendations for nomenclature of ion-selective electrodes (IUPAC Recommendations 1994), Pure and Applied Chemistry, 66(12), 2527-2536.
  • Divrikli, U., Soylak, M., & Elci, L. (2008). Determination of total chromium by flame atomic absorption spectrometry after coprecipitation by cerium (IV) hydroxide, Environmental monitoring and assessment, 138(1), 167-172.
  • Elavarasi, M., Alex, S. A., Chandrasekaran, N., & Mukherjee, A. (2014). Simple fluorescence-based detection of Cr (III) and Cr (VI) using unmodified gold nanoparticles, Analytical Methods, 6(24), 9554-9560.
  • Fekri, M., Khanmohammadi, H., Darvishpour, M., (2011). An electrochemical Cr (III)-Selective Sensor-Based on a Newly Synthesized Ligand and Optimization of Electrode With a Nano Particle, International Journal of electrochemical science, 1679-1685.
  • Gadzekpo, V.P.Y., Christian, G.D., (1984). Determination of selectivity coefficients of ion selective electrodes by a matched potential method, Analytica Chimica Acta, 164: 279-282.
  • Ganjali, M.R., Mizani, F., Salavati-Niasari, M., and Javanbakht, M., (2003). Novel Potentiometric Membrane Sensor for the Determination of Trace Amounts of Chromium (III) Ions, Analytical Sciences, 19:235-238.
  • Ganjali, M.R., Norouzi, P., Faridbod, F., Ghorbani, M., Adib, M., (2006). Highly selective and sensitive chromium (III) membrane sensors based on a new tridentate Schiff’s base, Analytica Chimica Acta, 569: 35-41.
  • Gholivand, M., Sharifpour, F., (2003). Chromium (III) ion selective electrode based on glyoxal bis(2-hydroxyanil), Talanta,707-713.
  • Gupta, V.K., Jain, A.K., Kumar, P., Agarwal, S., Maheshwari, G., (2006). Chromium (III)-selective sensor based on tri-o-thymotide in PVC matrix, Sensors and Actuators B, 113: 182-186.
  • Hamilton, E. M., Young, S. D., Bailey, E. H., & Watts, M. J. (2018). Chromium speciation in foodstuffs: A review, Food chemistry, 250, 105-112.
  • Heidari, Z., Masrournia, M., & Khoshnood, R. S. (2016). Fabrication a composite electrode based on MWCNT/Zeolite for potentiometric determination of Cr3+, Oriental Journal of Chemistry, 32(1), 627.
  • Kaur, V., & Malik, A. K. (2009). Speciation of chromium metal ions by RP-HPLC, Journal of chromatographic science, 47(3), 238-242.
  • Khound, N. J., Phukon, P., & Bhattacharyya, K. G. (2019). Toxic Trace Metals in the Surface Water Sources of Jia–Bharali river basin, North Brahmaputra Plain, India-A Hydrochemical Elucidation, Water Resources, 46(1), 117-127.
  • Kimbrough, D. E., Cohen, Y., Winer, A. M., Creelman, L., & Mabuni, C. (1999). A critical assessment of chromium in the environment, Critical reviews in environmental science and technology, 29(1), 1-46.
  • Kumar, K. G., & Muthuselvi, R. (2006). Spectrophotometric determination of chromium (III) with 2-hydroxybenzaldiminoglycine, Journal of Analytical Chemistry, 61(1), 28-31.
  • Kumar, P., Sharma, H. K., & Shalaan, K. G. (2013). Development of chromium (III) selective potentiometric sensor by using synthesized triazole derivative as an ionophore, Journal of Chemistry, 2013.
  • McIver, D. J., Grizales, A. M., Brownstein, J. S., & Goldfine, A. B. (2015). Risk of type 2 diabetes is lower in US adults taking chromium-containing supplements, The Journal of nutrition, 145(12), 2675-2682.
  • Michalski, R. (2005). Trace level determination of Cr (III)/Cr (VI) in water samples using ion chromatography with UV detection, Journal of liquid chromatography & related technologies, 28(18), 2849-2862.
  • National Research Council (1989). Recommended dietary allowances, 10th ed., National Academy Press, Washington, DC, USA.
  • Pettine, M., Campanella, L., Millero, F.J., (2002). Reduction of hexavalent chromium by H2O2 in acidic solutions, Environmental Science and Technology, 36: 901.
  • Sharma, R.K., and Goel, A., (2005). Development of a Cr(III)-specific potentiometric sensor using Aurin tricarboxylic acid modified silica, Analytica Chimica Acta, 534: 137-142.
  • Sılku, P., Özkınalı, S., Öztürk, Z., Asan, A., & Köse, D. A. (2016). Synthesis of novel Schiff Bases containing acryloyl moiety and the investigation of spectroscopic and electrochemical properties, Journal of Molecular Structure, 1116, 72-83.
  • Sun, Z., & Liang, P. (2008). Determination of Cr (III) and total chromium in water samples by cloud point extraction and flame atomic absorption spectrometry, Microchimica Acta, 162(1-2), 121-125.
  • Wilson, P. B. (2019). Population‐representative analysis of dietary supplementation among Americans with diabetes mellitus, Journal of diabetes, 11(2), 115-121.
  • Zamani, H., Ghadier, R., Ganjali, M.R., (2006). Highly selective and sensitive chromium (III) membrane sensors based on 4-amino-3-hydrazino-6-methyl-1,2,4-triazin-5-one as a new neutral ionophore, Sensors and Actuators B, 119: 41-46.
  • Zhao, Y., & Han, G. (1994). Rapid spectrophotometric determination of chromium (III), Talanta, 41(8), 1247-1250.
There are 29 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Makaleler
Authors

Osman Çubuk 0000-0001-7858-2803

Gülüzar Kıranlıoğlu This is me 0000-0002-0002-3216

Fatih Çoldur 0000-0002-7037-2825

Sevil Özkınalı 0000-0001-9166-191X

Publication Date August 31, 2021
Published in Issue Year 2021

Cite

APA Çubuk, O., Kıranlıoğlu, G., Çoldur, F., Özkınalı, S. (2021). Investigation of Schiff Bases Containing Acryloyl Moiety as Ionophore in Potentiometric Ion-Selective Sensors. Erzincan University Journal of Science and Technology, 14(2), 664-676. https://doi.org/10.18185/erzifbed.951061