Zaman Serileri Kullanılarak Nehir Akım Tahmini ve Farklı Yöntemlerle Karşılaştırılması
Year 2018,
Volume: 11 Issue: 1, 92 - 101, 24.04.2018
Abdüsselam Altunkaynak
,
Eyyup Başakın
Abstract
İnsan hayatının devam ettirilmesi ve refah seviyesinin arttırılması için su kaynakları büyük önem arz etmektedir. Su kaynaklarının korunması, geliştirilmesi ve kullanımı için iyi bir planlama şarttır. Bu planlamaların en önemli adımı ise kullanılacak su kaynağının mevcut potansiyeli ve gelecekteki potansiyelin belirlenmesidir. Bir su kaynağının gelecekte sahip olması beklenen potansiyelin belirlenmesi için bazı matematiksel tahmin modelleri kullanılmaktadır. Bu çalışmada da Amerika’da bulunan Columbia Nehri'nin 1950-1960 yılları arasında ölçülmüş olan günlük akım verileri kullanılarak matematik modeller geliştirilmiştir. Bu modellemeler aşamasında Uyarlamalı Ağ Tabanlı Bulanık Mantık Çıkarım Sistemi yöntemi (ANFIS), Yapay Sinir Ağları ile Doğrusal Olmayan Otoregresif Model(NAR) ve Otoregresif Hareketli Ortalama Modeller(ARIMA) kullanılmıştır. Modellerin tahmin performansları istatistiksel kriterlere göre değerlendirilmiştir. Bulanık Mantık Model tahmin sonuçları NAR ve ARIMA model tahmin sonuçlarından daha iyi sonuç verdiği görülmüştür.
References
- Altunkaynak, A. (2007). Forecasting Surface Water Level Fluctuations of Lake Van by Artificial Neural Networks. Water Resources Management, 21(2), 399-408.
- Altunkaynak, A. (2010). A predictive model for well loss using fuzzy logic approach. Hydrological Processes, 24(17), 2400-2404.
- Altunkaynak, A., & Şen, Z. (2007). Fuzzy logic model of lake water level fluctuations in Lake Van, Turkey. Theoretical and Applied Climatology, 90(3), 227-233.
- Bazartseren, B., Hildebrandt, G., & Holz, K. P. (2003). Short-term water level prediction using neural networks and neuro-fuzzy approach. Neurocomputing, 55(3), 439-450.
- Dickey, D. A., & Fuller, W. A. (1981). Likelihood Ratio Statistics for Autoregressive Time Series with a Unit Root. Econometrica, 49(4), 1057- 1072.
- Dixon, B. (2005). Applicability of neuro-fuzzy techniques in predicting ground-water vulnerability: a GIS-based sensitivity analysis. Journal of Hydrology, 309(1),17- 38.
- Gersch, W., Nielsen, N. N., & Akaike, H. (1973). Maximum likelihood estimation of structural parameters from random vibration data. Journal of Sound and Vibration, 31(3), 295-308.
- Lohani, A. K., Kumar, R., & Singh, R. D. (2012). Hydrological time series modeling: A comparison between adaptive neuro-fuzzy, neural network and autoregressive techniques. Journal of Hydrology, 442, 23-35.
- Mamdani, E. H. (1974). Application of fuzzy algorithms for control of simple dynamic plant. Electrical Engineers, Proceedings of the Institution of, 121(12), 1585-1588.
- Nayak, P. C., Sudheer, K. P., Rangan, D. M., & Ramasastri, K. S. (2004). A neuro-fuzzy computing technique for modeling hydrological time series. Journal of Hydrology, 291(1), 52-66.
- Ponnambalam, K., Karray, F., & Mousavi, S. J. (2003). Minimizing variance of reservoir systems operations benefits using soft computing tools. Fuzzy Sets and Systems, 139(2), 451-461.
- See, L., & Openshaw, S. (2000). A hybrid multi-model approach to river level forecasting. Hydrological Sciences Journal, 45(4), 523-536.
- Şen, Z., & Altunkaynak, A. (2006). A comparative fuzzy logic approach to runoff coefficient and runoff estimation. Hydrological Processes, 20(9), 1993-2009.
- Takagi, T., & Sugeno, M. (1985). Fuzzy identification of systems and its applications to modeling and control. IEEE Transactions on Systems, Man, and Cybernetics, SMC-15(1), 116-132.
- Yarar, A. (2010). MODELLING OF PRECIPITATION STREAMFLOW DATA OF SUSURLUK BASIN. (Ph.D THESIS), SELÇUK UNIVERSITY
- Zadeh, L. A. (1965). Fuzzy sets. Information and Control, 8(3), 338-353.
Prediction of River Flow Using Time Series and Comparison with Different Methods
Year 2018,
Volume: 11 Issue: 1, 92 - 101, 24.04.2018
Abdüsselam Altunkaynak
,
Eyyup Başakın
Abstract
Maintaining and improving the quality of living standards of human life on the water resources is most important. It is necessary to make a good planning to protect, develop and use of water resources. The most important step is to determine the existing potential of water resources to use and the potential to likely have in the future. Some mathematical prediction methods have been used to determine expected potential to have in the future. In this study, mathematical models using. Daily flow data of Columbia river, which was measured in the USA between 1950 and 1960 were formed. In the stage of modelling Adaptive Network Based Fuzzy Logic Inference System Method(ANFIS), Artificial Neural Network Nonlinear Autoregressive Models (NAR) and Autoregressive Moving Average models were used. Models are tested by statistical criteria and Fuzzy Logic Inference System model prediction was found better than NAR and ARIMA methods.
References
- Altunkaynak, A. (2007). Forecasting Surface Water Level Fluctuations of Lake Van by Artificial Neural Networks. Water Resources Management, 21(2), 399-408.
- Altunkaynak, A. (2010). A predictive model for well loss using fuzzy logic approach. Hydrological Processes, 24(17), 2400-2404.
- Altunkaynak, A., & Şen, Z. (2007). Fuzzy logic model of lake water level fluctuations in Lake Van, Turkey. Theoretical and Applied Climatology, 90(3), 227-233.
- Bazartseren, B., Hildebrandt, G., & Holz, K. P. (2003). Short-term water level prediction using neural networks and neuro-fuzzy approach. Neurocomputing, 55(3), 439-450.
- Dickey, D. A., & Fuller, W. A. (1981). Likelihood Ratio Statistics for Autoregressive Time Series with a Unit Root. Econometrica, 49(4), 1057- 1072.
- Dixon, B. (2005). Applicability of neuro-fuzzy techniques in predicting ground-water vulnerability: a GIS-based sensitivity analysis. Journal of Hydrology, 309(1),17- 38.
- Gersch, W., Nielsen, N. N., & Akaike, H. (1973). Maximum likelihood estimation of structural parameters from random vibration data. Journal of Sound and Vibration, 31(3), 295-308.
- Lohani, A. K., Kumar, R., & Singh, R. D. (2012). Hydrological time series modeling: A comparison between adaptive neuro-fuzzy, neural network and autoregressive techniques. Journal of Hydrology, 442, 23-35.
- Mamdani, E. H. (1974). Application of fuzzy algorithms for control of simple dynamic plant. Electrical Engineers, Proceedings of the Institution of, 121(12), 1585-1588.
- Nayak, P. C., Sudheer, K. P., Rangan, D. M., & Ramasastri, K. S. (2004). A neuro-fuzzy computing technique for modeling hydrological time series. Journal of Hydrology, 291(1), 52-66.
- Ponnambalam, K., Karray, F., & Mousavi, S. J. (2003). Minimizing variance of reservoir systems operations benefits using soft computing tools. Fuzzy Sets and Systems, 139(2), 451-461.
- See, L., & Openshaw, S. (2000). A hybrid multi-model approach to river level forecasting. Hydrological Sciences Journal, 45(4), 523-536.
- Şen, Z., & Altunkaynak, A. (2006). A comparative fuzzy logic approach to runoff coefficient and runoff estimation. Hydrological Processes, 20(9), 1993-2009.
- Takagi, T., & Sugeno, M. (1985). Fuzzy identification of systems and its applications to modeling and control. IEEE Transactions on Systems, Man, and Cybernetics, SMC-15(1), 116-132.
- Yarar, A. (2010). MODELLING OF PRECIPITATION STREAMFLOW DATA OF SUSURLUK BASIN. (Ph.D THESIS), SELÇUK UNIVERSITY
- Zadeh, L. A. (1965). Fuzzy sets. Information and Control, 8(3), 338-353.