Research Article
BibTex RIS Cite

2-Metoksipiridin-3-Boronik Asitin Lineer Olmayan Özellikleri, Konformasyonel, Titreşimsel ve Elektronik Yapısı Üzerine Substitüent Etkisinin Kuantum Mekanik Metodlar ile Araştırılması

Year 2019, Volume: 12 Issue: 1, 14 - 24, 24.03.2019
https://doi.org/10.18185/erzifbed.416682

Abstract

Bu çalışmada, 2-metoksipiridin-3-boronik asit (I) ve 6-sübstitüe-2-metoksipiridin-3-boronik asit türevleri; 6-floro-2-metoksipiridin-3-boronik (II) ve 6-kloro-2-metoksipiridin-3- boronik asit (III) moleküllerinin yapısal parametreleri, titreşim frekansları, dipol moment (μ), polarizebilite (α) ve hiperpolarizebilite (β) değerleri Hartree Fock (HF) ve Yoğunluk Fonksiyonel Teorisi (DFT/B3LYP) metotlarında 6-311 ++ G (d, p) temel seti kullanılarak hesaplatıldı. IIIve III moleküllerinin en yüksek dolu molekül orbital (HOMO) ve en düşük boş molekül orbital (LUMO) aynı metot-temel seti kombinasyonu ile hesaplandı ve enerji aralıkları (ΔEg) incelendi.   1H ve 13C-NMR kimyasal kayma değerleri GIAO yaklaşımına göre gaz fazında B3LYP/6-311+G (2d,p) ve HF/6-31G (d) yöntemleri ile hesalandı. Ayrıca, moleküllerin potansiyel enerji yüzeyi (PEY), C1-C2-B-O1 dihedral açısının fonksiyonu olarak her iki metotta 6-31+G temel seti kullanılarak yapıldı. Hesaplanan PEY üzerinde 0˚, 140˚, 220˚ ve 360˚’ de minimum, 90˚, 180˚ ve 270˚ de ise maksimumlar yer almaktadır. Moleküllerin hiperpolarizebilite değerlerinin sıralaması III>II>Işeklindedir. En büyük bariyer yüksekliğine180˚ de I molekülünün sahip olduğu görüldü.  IIIve IIImoleküllerinin dipol moment değerleri sırasıyla, B3LYP / 6-311 ++ G (d, p) metot-temel seti kombinasyonu ile 1.18, 1.19 ve1.25 HF / 6-311 ++ G (d, p) metot-temel seti kombinasyonu 1.17, 1.16 ve 1.30 Debye bulundu. Her iki metotta hesaplanan I molekülünün yapısal parametreleri, literatürdeki verilerle karşılaştırıldı ve yapısal parametreler arasında iyi bir uyum olduğu görüldü.

References

  • Baker, S. J., Akama, T., Zhang, Y. K., Sauro, V., Pandit, C., Singh, R., Kully, M., Khan, J., Plattner, J. J., Benkovic, S. J., Lee, V., Maples, K. R. 2006. Identification of a Novel Boron-containing Antibacterial Agent (AN0128) with Anti-inflammatory Activity, for the Potential Treatment of Cutaneous Diseases. Bioorg. Med. Chem. Lett. 16, 5963-5967.
  • Becke, A. D. 1988. Density-functional exchange-energy approximation with correct asymptotic behavior. Physical Review A, 38(6), 3098–3100.
  • Becke, A. D, 1993. Density-functional thermochemistry 3. The role of exact exchange. The Journal of Chemical Physics, 98 (7), 5648-5652.
  • Bouillon, A., Lancelot, J. C., Collot, V., Bovy, P. R., Rault, S. 2002. Synthesis of novel halopyridinylboronic acids and esters. Part 1: 6-Halopyridin-3-yl-boronic acids and estersTetrahedron 58, 2885-2890.
  • Cai, D., Larsen, R. D., Reider, P. J. 2002. Effective lithiation of 3-bromopyridine: synthesis of 3-pyridine boronic acid and variously 3-substituted pyridines Tetrahedron Lett., 43, 4285-4287.
  • Cannizzo, C., Amigoni-Gerbier, S., Larpent, C. 2005. Boronic Acid-functionalized Nanoparticles: Synthesis by Microemulsion Polymerization and Application as a Re-usable Optical Nanosensor for Carbohydrates, Polymer, 46, 1269-1276.
  • Cooper, C. R., Spencer, N., James, T. D. 1998. Selective Fluorescence Detection of Fluoride Using Boronic Acids. Chem. Commun. 1365-1366.
  • Dabrowski, M., Lulinski, S., Serwatowski J., Szczerbinska, M. 2006. (2-Methoxy-3-pyridyl) boronic acid, Acta. Crystallogr., C62, 702-704.
  • Dennington, R., Keith, T., Millam, J. 2009. Semichem Inc., GaussView, Version 5, Shawnee Mission KS,
  • Fischer, F. C., Havinga, E. 1974. Thermal and photoinduced deboronations of some pyridine‐ and benzeneboronate anions. Recueil, 93, 21-24.
  • Fischer, F. C., Havinga, E. 1965. Pyridineboronic Acids, Recueil 84, 439-440.
  • Frankland, E., Duppa, B. F. 1860. "Vorläufige Notiz über Boräthyl" Justus Liebigs Ann Chem 115, 319-322.
  • Frisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R., Scalmani, G., Barone, V., Mennucci, B., Petersson, G. A., Nakatsuji, H., Caricato, M., Li, X., Hratchian, H. P., Izmaylov, A. F., Bloino, J., Zheng, G., Sonnenberg, J. L., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Vreven, T., Montgomery, J. A., Vreven, T. J., Peralta, J. E., Ogliaro, F., Bearpark, M., Heyd, J. J., Brothers, E., Kudin, N., Staroverov, V. N., Kobayashi, R., Normand, J., Raghavachari, K., Rendell, A., Burant, J. C., Iyengar, S. S., Tomasi, J., Cossi, M., Rega, N., Millam, J. M., Klene, M., Knox, J. E., Cross, J. B., Bakken, V., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, R. E., Yazyev, O., Austin, A. J., Cammi, R., Pomelli, C. J., Ochterski, W., Martin, L. R., Morokuma, K., Zakrzewski, V. G., Voth, G. A., Salvador, P., Dannenberg, J. J., Dapprich, S., Daniels, A. D., Farkas, O., Foresman, J. B., Ortiz, J. V., Cioslowski, J., Fox, D. J., 2009. Gaussian Inc., (Wallingford, CT).
  • Halo, T. L., Appelbaum, J., Hobert, E. M., Balkin, D. M., Schepartz, A. 2009. Selective Recognition of Protein Tetraserine Motifs with a Cell-permeable, Pro-fluorescent Bis-boronic Acid. J. Am. Chem.Soc. 131, 438-439.
  • Jabbour, A., Steinberg, D., Dembitsky, V. M., Moussaieff, A., Zaks, B., Srebnik, M. 2004. Synthesis and Evaluation of Oxazaborolidines for Antibacterial Activity against Streptococcus Mutans, J. Med.Chem., 47, 2409-2410.
  • Jamróz, M. H. 2004. Vibrational Energy Distribution Analysis: VEDA 4 program, Warsaw
  • Krishnan, R., Binkley, J. S., Seeger, R., Pople, J. A. 1980. Self-consistent molecular-orbital methods. basis set for correlated wave-functions, The Journal of Chemical Physics, 72, 650-654.
  • Lee C. T, Yang W. T, Parr R. G. 1988. Development of the colle-salvetti correlation-energy formula into a functional of the electron density. Physical Review B, 37, 785-789.
  • McLean, A. D., Chandler, G. S. 1980. Contracted Gaussian basis sets for molecular calculations. I. Second row atoms, Z=11–18. The Journal of Chemical Physics, 72, 5639-5648.
  • Moller, C., Plesset, M. S. 1934. Note on an approximation treatment for many- electron systems. Physical Review, 46, 618-622.
  • Petasis, N. A. 2007. Expanding Roles For Organoboron Compounds – Versatile And Valuable Molecules For Synthetic, Biological And Medicinal Chemistry Australian Journal of Chemistry, 60(11), 795-798.
  • Sangeetha, C. C., Madivanane, R., Pouchaname, V., Vijaya Prasath, R., 2014. Experimental (FT-IR & FT-Raman) and theoretical investigation, electronic properties of quinoxaline. International Journal of ChemTech Research, 6 (5), 2854-2865.
  • Saygılı, N. 2011. New pyridinylboronic acid and new heterobiaryls via Cross-Coupling reaction of pyridinylboronic acids with heteroaryl halides ,Hacettepe University Journal of the Faculty of Pharmacy, 31, 85-96.
  • Sundaraganesana, N., Ilakiamania, S., Saleema, H., Wojciechowskib, P. M., Michalskab, D. 2005. FT-Raman and FT-IR spectra, vibrational assignments and density functional studies of 5-bromo-2-nitropyridine, Spectrochimica Acta Part A, 61, 2995-3001.
  • Yang, W., Fan, H., Gao, S., Gao, X., Ni, W., Karnati, V., Hooks, W. B., Carson, J., Weston, B., Wang, B. 2004. The First Fluorescent Diboronic Acid Sensor Specific for Hepatocellular Carcinoma Cells Expressing Sialyl Lewis X. Chem. Biol., 11, 439-448.
  • Yalçın, Y. 2015. The Theoretical and Experimental Investigation of the Vibrational Spectra of 4-(Methylsulfanyl)Phenylboronic Acid Molecule. M. Sc. Thesis, Nevşehir Hacı Bektaş Veli Unıversıty, İnstitute of Science, Nevşehir.
  • Yang, W, Gao, X., Wang, B. 2003. Boronic acid compounds potential pharmaceutical Agents, Med. Res. Rev., 23, 346-368.
  • Varughese, S., Sinha, S. B., Desiraju, G. R. 2011. Phenylboronic acids in crystal engineering: Utility of the energetically unfavorable syn,syn-conformation in co-crystal design,Sci china chem., 54 (12), 1909-1919.

Investigation of Substitute Effect on Non-Linear Properties, Conformational, Vibrational and Electronic Structure of 2-Methoxypyridine-3-Boronic Acid by Quantum Mechanical Methods

Year 2019, Volume: 12 Issue: 1, 14 - 24, 24.03.2019
https://doi.org/10.18185/erzifbed.416682

Abstract

In this study, the values of structural parameters, vibration frequencies, dipole moment (μ), polarizability (α), hyperpolarizability β) of 2-methoxypyridine-3-boronic acid (I) and 6-substituted-2-methoxypyridine-3-boronic acid derivatives; 6-fluoro-2-methoxypyridine-3-boronic (II) and 6-chloro-2-methoxypyridine-3-boronic acid (III) molecules have been calculated at Hartree Fock (HF) and Density Functional Theory (DFT / B3LYP) with 6-311++G (d, p) basis set. The highest occupied molecular orbital (HOMO), the lowest unoccupied molecular orbital (LUMO) of I, II ve III molecules have been computed and their respective gap (ΔEg) have been examined. The 1H and 13C NMR chemical shift values were calculated in gas phase by GIAO approach using B3LYP/6-311+G (2d,p) and HF/6-31G (d) level of theory. In addition, the potential energy surface (PES) of the molecules as a function of the dihedral angle (C1-C2-B-O1) have been carried out using the 6-31+G basis set in both methods. There are minimums at 0˚, 140˚, 220˚ and 360˚, maximums at 90˚, 180˚ and 270˚ on the calculated potential energy surfaces. The order of the hyperpolarizability values of the molecules is IIIIII. It was seen that I molecule had at the maximum barrier height at 180˚. The dipole moment values of molecules IIIand IIIare found as 1.18, 1.19 and 1.25 at B3LYP / 6-311++G (d, p) method-basis set combination and 1.17, 1.16 and 1.30 Debye at HF / 6-311++G (d, p) method-basis set combination, respectively. The structural parameters of the Imolecule, which were calculated by both methods, were compared with the data in the literature and there was a good agreement between the structural parameters.

References

  • Baker, S. J., Akama, T., Zhang, Y. K., Sauro, V., Pandit, C., Singh, R., Kully, M., Khan, J., Plattner, J. J., Benkovic, S. J., Lee, V., Maples, K. R. 2006. Identification of a Novel Boron-containing Antibacterial Agent (AN0128) with Anti-inflammatory Activity, for the Potential Treatment of Cutaneous Diseases. Bioorg. Med. Chem. Lett. 16, 5963-5967.
  • Becke, A. D. 1988. Density-functional exchange-energy approximation with correct asymptotic behavior. Physical Review A, 38(6), 3098–3100.
  • Becke, A. D, 1993. Density-functional thermochemistry 3. The role of exact exchange. The Journal of Chemical Physics, 98 (7), 5648-5652.
  • Bouillon, A., Lancelot, J. C., Collot, V., Bovy, P. R., Rault, S. 2002. Synthesis of novel halopyridinylboronic acids and esters. Part 1: 6-Halopyridin-3-yl-boronic acids and estersTetrahedron 58, 2885-2890.
  • Cai, D., Larsen, R. D., Reider, P. J. 2002. Effective lithiation of 3-bromopyridine: synthesis of 3-pyridine boronic acid and variously 3-substituted pyridines Tetrahedron Lett., 43, 4285-4287.
  • Cannizzo, C., Amigoni-Gerbier, S., Larpent, C. 2005. Boronic Acid-functionalized Nanoparticles: Synthesis by Microemulsion Polymerization and Application as a Re-usable Optical Nanosensor for Carbohydrates, Polymer, 46, 1269-1276.
  • Cooper, C. R., Spencer, N., James, T. D. 1998. Selective Fluorescence Detection of Fluoride Using Boronic Acids. Chem. Commun. 1365-1366.
  • Dabrowski, M., Lulinski, S., Serwatowski J., Szczerbinska, M. 2006. (2-Methoxy-3-pyridyl) boronic acid, Acta. Crystallogr., C62, 702-704.
  • Dennington, R., Keith, T., Millam, J. 2009. Semichem Inc., GaussView, Version 5, Shawnee Mission KS,
  • Fischer, F. C., Havinga, E. 1974. Thermal and photoinduced deboronations of some pyridine‐ and benzeneboronate anions. Recueil, 93, 21-24.
  • Fischer, F. C., Havinga, E. 1965. Pyridineboronic Acids, Recueil 84, 439-440.
  • Frankland, E., Duppa, B. F. 1860. "Vorläufige Notiz über Boräthyl" Justus Liebigs Ann Chem 115, 319-322.
  • Frisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R., Scalmani, G., Barone, V., Mennucci, B., Petersson, G. A., Nakatsuji, H., Caricato, M., Li, X., Hratchian, H. P., Izmaylov, A. F., Bloino, J., Zheng, G., Sonnenberg, J. L., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Vreven, T., Montgomery, J. A., Vreven, T. J., Peralta, J. E., Ogliaro, F., Bearpark, M., Heyd, J. J., Brothers, E., Kudin, N., Staroverov, V. N., Kobayashi, R., Normand, J., Raghavachari, K., Rendell, A., Burant, J. C., Iyengar, S. S., Tomasi, J., Cossi, M., Rega, N., Millam, J. M., Klene, M., Knox, J. E., Cross, J. B., Bakken, V., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, R. E., Yazyev, O., Austin, A. J., Cammi, R., Pomelli, C. J., Ochterski, W., Martin, L. R., Morokuma, K., Zakrzewski, V. G., Voth, G. A., Salvador, P., Dannenberg, J. J., Dapprich, S., Daniels, A. D., Farkas, O., Foresman, J. B., Ortiz, J. V., Cioslowski, J., Fox, D. J., 2009. Gaussian Inc., (Wallingford, CT).
  • Halo, T. L., Appelbaum, J., Hobert, E. M., Balkin, D. M., Schepartz, A. 2009. Selective Recognition of Protein Tetraserine Motifs with a Cell-permeable, Pro-fluorescent Bis-boronic Acid. J. Am. Chem.Soc. 131, 438-439.
  • Jabbour, A., Steinberg, D., Dembitsky, V. M., Moussaieff, A., Zaks, B., Srebnik, M. 2004. Synthesis and Evaluation of Oxazaborolidines for Antibacterial Activity against Streptococcus Mutans, J. Med.Chem., 47, 2409-2410.
  • Jamróz, M. H. 2004. Vibrational Energy Distribution Analysis: VEDA 4 program, Warsaw
  • Krishnan, R., Binkley, J. S., Seeger, R., Pople, J. A. 1980. Self-consistent molecular-orbital methods. basis set for correlated wave-functions, The Journal of Chemical Physics, 72, 650-654.
  • Lee C. T, Yang W. T, Parr R. G. 1988. Development of the colle-salvetti correlation-energy formula into a functional of the electron density. Physical Review B, 37, 785-789.
  • McLean, A. D., Chandler, G. S. 1980. Contracted Gaussian basis sets for molecular calculations. I. Second row atoms, Z=11–18. The Journal of Chemical Physics, 72, 5639-5648.
  • Moller, C., Plesset, M. S. 1934. Note on an approximation treatment for many- electron systems. Physical Review, 46, 618-622.
  • Petasis, N. A. 2007. Expanding Roles For Organoboron Compounds – Versatile And Valuable Molecules For Synthetic, Biological And Medicinal Chemistry Australian Journal of Chemistry, 60(11), 795-798.
  • Sangeetha, C. C., Madivanane, R., Pouchaname, V., Vijaya Prasath, R., 2014. Experimental (FT-IR & FT-Raman) and theoretical investigation, electronic properties of quinoxaline. International Journal of ChemTech Research, 6 (5), 2854-2865.
  • Saygılı, N. 2011. New pyridinylboronic acid and new heterobiaryls via Cross-Coupling reaction of pyridinylboronic acids with heteroaryl halides ,Hacettepe University Journal of the Faculty of Pharmacy, 31, 85-96.
  • Sundaraganesana, N., Ilakiamania, S., Saleema, H., Wojciechowskib, P. M., Michalskab, D. 2005. FT-Raman and FT-IR spectra, vibrational assignments and density functional studies of 5-bromo-2-nitropyridine, Spectrochimica Acta Part A, 61, 2995-3001.
  • Yang, W., Fan, H., Gao, S., Gao, X., Ni, W., Karnati, V., Hooks, W. B., Carson, J., Weston, B., Wang, B. 2004. The First Fluorescent Diboronic Acid Sensor Specific for Hepatocellular Carcinoma Cells Expressing Sialyl Lewis X. Chem. Biol., 11, 439-448.
  • Yalçın, Y. 2015. The Theoretical and Experimental Investigation of the Vibrational Spectra of 4-(Methylsulfanyl)Phenylboronic Acid Molecule. M. Sc. Thesis, Nevşehir Hacı Bektaş Veli Unıversıty, İnstitute of Science, Nevşehir.
  • Yang, W, Gao, X., Wang, B. 2003. Boronic acid compounds potential pharmaceutical Agents, Med. Res. Rev., 23, 346-368.
  • Varughese, S., Sinha, S. B., Desiraju, G. R. 2011. Phenylboronic acids in crystal engineering: Utility of the energetically unfavorable syn,syn-conformation in co-crystal design,Sci china chem., 54 (12), 1909-1919.
There are 28 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Makaleler
Authors

Güventürk Uğurlu 0000-0003-4171-7879

Publication Date March 24, 2019
Published in Issue Year 2019 Volume: 12 Issue: 1

Cite

APA Uğurlu, G. (2019). 2-Metoksipiridin-3-Boronik Asitin Lineer Olmayan Özellikleri, Konformasyonel, Titreşimsel ve Elektronik Yapısı Üzerine Substitüent Etkisinin Kuantum Mekanik Metodlar ile Araştırılması. Erzincan University Journal of Science and Technology, 12(1), 14-24. https://doi.org/10.18185/erzifbed.416682