Research Article
BibTex RIS Cite

Design of Hip Prosthesis with Porous Structure and Finite Element Analysis on Femur Bone

Year 2019, Volume: 12 Issue: 1, 95 - 105, 24.03.2019
https://doi.org/10.18185/erzifbed.424238

Abstract

Hip prosthesisis frequently used in the treatment of femoral head fractures. Material properties and the prosthetic attachment of the bone cells greatly influence the biomechanical behavior of the prosthesis because of differences in the design of the prosthesis. In this study, the design of the hip prosthesis used in femoral bone fractures was carried out in a different porous structure. In addition, finite element analyses were performed taking into account the mechanical properties of the bone according to the healing weeks. For this purpose, a two-piece hip prosthesis was designed. Lower part of prosthesis was modeled with two different porous structures with three different dense using SolidWorks 2018 software. Effective elasticity modulus was calculated taking into consideration of the mechanical properties of the hip prosthesis material and the callus structures which were formed during different healing periods.Then, according to the results obtained, the hip prosthesis was mounted on the thigh bone. The obtained models were analyzed using ANSYS 18.0 software under axial force of 1000N.As a result of the analyzes; since porous structures were used in the hip prosthesis, lower stresses in the hip prosthesis were observed.Also, it was concluded that differences on callus structure is an essential parameter that affects mechanical properties of bone-prosthesis structure.

References

  • Abreu, M.E., Viegas, V.N., Ibrahim, D. (2009). ‘’Treatment of comminuted mandibular fractures: a critical review’’, Med Oral Patol Oral Cir Bucal, 14 (5), 247-251.
  • Ali, D., Sen, S. (2017). ‘’Finite element analysis of mechanical behavior, permeability and fluid induced wall shear stress of high porosity scaffolds with gyroid and lattice-based architectures’’, Journal of the Mechanical Behavior of Biomedical Materials, 75, 262-270.
  • Balazic, M., Kopac, J., Jackson, M.J., Ahmed, W. (2007). ‘’Review: titanium and titanium alloy applications in medicine’’, International Journal of Nano and Biomaterials, 1 (1), 3-34.
  • Bilgen, Ö.F. (2011). ‘’Kalça Protezlerinde Malzeme ve Tasarım Özellikleri’’, Türkiye Ortopedi ve Travmatoloji Birliği Derneği Dergisi. 146-156
  • Boyer, R. (1996). ‘’An overview on the use of titanium in the aerospace industry’’, Materials Science and Engineering: A, 213 (1-2), 103-114.
  • Bram, M., Stiller, C., Buchkremer, H.P., Stover, D., Baur, H. (2001). ‘’High purity titanium, stainless steel and superalloy parts’’, Advance Engineering Materials, 2, 196-199.
  • Canpolat, C. (2010). ‘’Sinüzoidal Formda Kalça Protezinin Geliştirilmesi ve Sonlu Elemanlar Yöntemi ile Analizi’’, Yüksek Lisans Tezi, Gebze Yüksek Teknoloji Enstitüsü.
  • Entezari, A., Fang, J., Sue, A., Zhang, Z., Swain, M.V., Li, Q. (2016). ‘’Yielding behaviors of polymeric scaffolds with implications to tissue engineering’’, Materials Letters, 184, 108–111.
  • Ferrero, J. (2005). ‘’Candidate materials for high-strength fastener applications in both the aerospace and automotive industries’’, Journal of materials engineering and performance, 14 (6), 691-696.
  • Güden, M., Yıldırım, U. (2015). ‘’Gözenekli titanyum yapıların üretimi, mekanik özellikleri ve biyomedikal uygulamaları’’, DOI: 10.13140/RG.2.1.3499.4008.
  • Kayabaşı, O. (2011). ‘’Probabilistic Approach On The Analysis Of a Kayabaşı_Ekici Type Hip Prosthesis Using Approximate Solution Tecniques’’, Thesis for The Degree of Doctor of Philosophy in Mechanical Engineering, Marmara University Institute for Graduate Studies in Pure and Applied Sciences.
  • Luo, D., Rong, Q., Chen, Q. (2016). ‘’Finite-element design and optimization of a three-dimensional tetrahedral porous titanium scaffold for the reconstruction of mandibular defects’’, Medical Engineering & Physics, 47, 176–183.
  • Milijkovic, N.D., Ercegan, G.M., Stulic, R.B., Jandric, Z.B. (2011). ‘’Computer Aided Evaluation of Total Hip Prosthesis Stability’’, Journal for Geometry and Graphics, 2, 141-149.
  • Naghieh, S., Karamooz Ravari, M.R., Badrossamay, M., Foroozmehr, E., Kadkhodaei, M. (2016). ‘’Numerical investigation of the mechanical properties of the additive manufactured bone scaffolds fabricated by FDM: The effect of layer penetration and post-heating’’, Journal of the Mechanical Behavior of Biomedical Materials, 59, 241–250.
  • Wang, L., Kang, J., Sun, C., Li, D., Cao, Y., Jin, Z. (2017). ‘’Mapping porous microstructures to yield desired mechanical properties for application in 3D printed bone scaffolds and orthopaedic implants’’, Materials & Design, 133, 62–68.
  • Wen, C.E., Mabuchi, M., Yamada, Y., Shimojima, K., Chino, Y., Asahina, T. (2001). ‘’Precessing and biocompatible porous Ti anh Mg’’, Scripta Materialia, 45, 1147-1153.
  • Wen, C.E., Yamada, Y., Shimojima, K., Chino, Y., Asahina, T., Mabuchi, M. (2002). ‘’Processing and mechanical properties of autogenous titanium implant materials’’, Journal of Materials Science, 13, 397-401.
  • Wieding, J., Souffrant, R., Mittelmeier, W., Bader R. (2013). ‘’Finite element analysis on the biomechanical stability of open porous titanium scaffolds for large segmental bone defects under physiological load conditions’’, Medical Engineering & Physics, 422–432.

Gözenekli Yapıya Sahip Kalça Protezi Tasarımı ve Uyluk Kemiği Üzerinde Sonlu Elemanlar Analizi

Year 2019, Volume: 12 Issue: 1, 95 - 105, 24.03.2019
https://doi.org/10.18185/erzifbed.424238

Abstract

Uyluk kemiğinin yuvarlak başı (head of femur) kırıklarının tedavisinde, kalça protezi uygulanması sıklıkla kullanılmaktadır. Bununla birlikte, kullanılan protezlerin tasarımındaki farklılıklar, kullanılan malzeme özellikleri ve kemik hücrelerinin proteze bağlanması protezlerin biyomekanik davranışını büyük ölçüde etkilemektedir. Bu çalışmada, uyluk kemiği kırıklarında kullanılan gözenekli yapıya sahip kalça protezi tasarımı gerçekleştirilmiştir. Ayrıca kemiğin iyileşme haftalarına göre sergilediği özellikler de dikkate alınarak sonlu elemanlar yöntemiyle analizleri gerçekleştirilmiştir. Bu amaçla, iki parçadan oluşan kalça protezi, ayrıca iki farklı modelde ve üç farklı yoğunluğa sahip gözenekli yapılar SolidWorks 2018 yazılımı kullanılarak tasarlanmıştır. Kalça protezi malzemesi ve ayrıca farklı iyileşme periyotlarında oluşan kallus yapıların malzeme özellikleri de dikkate alınarak efektif elastisite modülü analizleri yapılmıştır. Daha sonra elde edilen sonuçlara göre kalça protezi uyluk kemiğine monte edilmiştir. Elde edilen modeller, 1000N’luk eksenel kuvvet altında ANSYS 18.0 yazılımı kullanılarak analiz edilmiştir. Gerçekleştirilen analizler sonucunda; kalça protezinde gözenekli yapılar kullanıldığından, yapılarda oluşan gerilmelerin daha düşük değerlerde olduğu tespit edilmiştir. Ayrıca kallus yapısının mekanik özelliklerindeki değişimin, kemik-protez yapısı üzerindeki etkiler bakımından önemli parametre olduğu sonucuna varılmıştır.

References

  • Abreu, M.E., Viegas, V.N., Ibrahim, D. (2009). ‘’Treatment of comminuted mandibular fractures: a critical review’’, Med Oral Patol Oral Cir Bucal, 14 (5), 247-251.
  • Ali, D., Sen, S. (2017). ‘’Finite element analysis of mechanical behavior, permeability and fluid induced wall shear stress of high porosity scaffolds with gyroid and lattice-based architectures’’, Journal of the Mechanical Behavior of Biomedical Materials, 75, 262-270.
  • Balazic, M., Kopac, J., Jackson, M.J., Ahmed, W. (2007). ‘’Review: titanium and titanium alloy applications in medicine’’, International Journal of Nano and Biomaterials, 1 (1), 3-34.
  • Bilgen, Ö.F. (2011). ‘’Kalça Protezlerinde Malzeme ve Tasarım Özellikleri’’, Türkiye Ortopedi ve Travmatoloji Birliği Derneği Dergisi. 146-156
  • Boyer, R. (1996). ‘’An overview on the use of titanium in the aerospace industry’’, Materials Science and Engineering: A, 213 (1-2), 103-114.
  • Bram, M., Stiller, C., Buchkremer, H.P., Stover, D., Baur, H. (2001). ‘’High purity titanium, stainless steel and superalloy parts’’, Advance Engineering Materials, 2, 196-199.
  • Canpolat, C. (2010). ‘’Sinüzoidal Formda Kalça Protezinin Geliştirilmesi ve Sonlu Elemanlar Yöntemi ile Analizi’’, Yüksek Lisans Tezi, Gebze Yüksek Teknoloji Enstitüsü.
  • Entezari, A., Fang, J., Sue, A., Zhang, Z., Swain, M.V., Li, Q. (2016). ‘’Yielding behaviors of polymeric scaffolds with implications to tissue engineering’’, Materials Letters, 184, 108–111.
  • Ferrero, J. (2005). ‘’Candidate materials for high-strength fastener applications in both the aerospace and automotive industries’’, Journal of materials engineering and performance, 14 (6), 691-696.
  • Güden, M., Yıldırım, U. (2015). ‘’Gözenekli titanyum yapıların üretimi, mekanik özellikleri ve biyomedikal uygulamaları’’, DOI: 10.13140/RG.2.1.3499.4008.
  • Kayabaşı, O. (2011). ‘’Probabilistic Approach On The Analysis Of a Kayabaşı_Ekici Type Hip Prosthesis Using Approximate Solution Tecniques’’, Thesis for The Degree of Doctor of Philosophy in Mechanical Engineering, Marmara University Institute for Graduate Studies in Pure and Applied Sciences.
  • Luo, D., Rong, Q., Chen, Q. (2016). ‘’Finite-element design and optimization of a three-dimensional tetrahedral porous titanium scaffold for the reconstruction of mandibular defects’’, Medical Engineering & Physics, 47, 176–183.
  • Milijkovic, N.D., Ercegan, G.M., Stulic, R.B., Jandric, Z.B. (2011). ‘’Computer Aided Evaluation of Total Hip Prosthesis Stability’’, Journal for Geometry and Graphics, 2, 141-149.
  • Naghieh, S., Karamooz Ravari, M.R., Badrossamay, M., Foroozmehr, E., Kadkhodaei, M. (2016). ‘’Numerical investigation of the mechanical properties of the additive manufactured bone scaffolds fabricated by FDM: The effect of layer penetration and post-heating’’, Journal of the Mechanical Behavior of Biomedical Materials, 59, 241–250.
  • Wang, L., Kang, J., Sun, C., Li, D., Cao, Y., Jin, Z. (2017). ‘’Mapping porous microstructures to yield desired mechanical properties for application in 3D printed bone scaffolds and orthopaedic implants’’, Materials & Design, 133, 62–68.
  • Wen, C.E., Mabuchi, M., Yamada, Y., Shimojima, K., Chino, Y., Asahina, T. (2001). ‘’Precessing and biocompatible porous Ti anh Mg’’, Scripta Materialia, 45, 1147-1153.
  • Wen, C.E., Yamada, Y., Shimojima, K., Chino, Y., Asahina, T., Mabuchi, M. (2002). ‘’Processing and mechanical properties of autogenous titanium implant materials’’, Journal of Materials Science, 13, 397-401.
  • Wieding, J., Souffrant, R., Mittelmeier, W., Bader R. (2013). ‘’Finite element analysis on the biomechanical stability of open porous titanium scaffolds for large segmental bone defects under physiological load conditions’’, Medical Engineering & Physics, 422–432.
There are 18 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Makaleler
Authors

Hojjat Ghahramanzadeh Asl

Serap Yılmaz This is me

Ertuğrul Sarı This is me

Publication Date March 24, 2019
Published in Issue Year 2019 Volume: 12 Issue: 1

Cite

APA Ghahramanzadeh Asl, H., Yılmaz, S., & Sarı, E. (2019). Gözenekli Yapıya Sahip Kalça Protezi Tasarımı ve Uyluk Kemiği Üzerinde Sonlu Elemanlar Analizi. Erzincan University Journal of Science and Technology, 12(1), 95-105. https://doi.org/10.18185/erzifbed.424238