Research Article
BibTex RIS Cite

Parametrik Eğriler Tekniği Kullanılarak Rezidüel Gravite Verilerinin Türevlerinden Kaynağın Şekil ve Derinliğinin Belirlenmesi: Türkiye’de Erzincan-Çayırlı Bölgesi’nden Örnek Bir Çalışma

Year 2019, Volume: 12 Issue: 1, 294 - 305, 24.03.2019
https://doi.org/10.18185/erzifbed.453364

Abstract

Bu
çalışmada, gömülü bir yapının şekil ve derinliğini eş zamanlı olarak kestiren
bir teknik olan parametrik eğriler tekniği, rezidüel gravite verilerinin
türevlerine uygulandı. Bu metot, kaynağın şekil ve derinliği arasında bir
ilişki kurmak için profil verilerinin karakteristik noktalarını ve orijinini
kullanır. Düşey fay modeli için rezidüel gravite verisinin ikinci dereceden
türevi kullanırken, gömülü küre, yatay silindir, düşey silindir ve yarı sonsuz
düşey dayk modelleri için rezidüel gravite verisinin birinci dereceden
türevleri kullanıldı. Ayrıca, C# dili ve .NET Framework 4.5 kullanılarak bir
yazılım geliştirildi. Yöntem beş sentetik modele uygulandı ve her bir model
için şekil faktörleri belirlendi. Sentetik örneklere ilave olarak, yöntemin
geçerliliğini test etmek için Türkiye’den bir rezidüel gravite haritası
kullanıldı. Çalışma alanından elde edilen üç profil verisine hem önerilen
yöntem hem de güç spektrumu yöntemi uygulandı ve hesaplanan derinlikler birbiri
ile karşılaştırıldı. Son olarak, hesaplanan derinlikler kullanılarak
Erzincan-Çayırlı Baseni’nin üç boyutlu bir modeli oluşturuldu.

References

  • Abdelrahman, E.M., Hassanein, H. 2000. “Shape and depth solutions from magnetic data using a parametric relationship”, Geophysics, 65(1), 126-131.
  • Abdelrahman, E.M., El-Araby, T.M., El-Araby, E.M., Abo-Ezz, E.R. 2001. “A new method for shape and depth determinations from gravity data”, Geophysics, 66(6), 1774-1780.
  • Abdelrahman, E.M., El-Araby, T.M., Essa, K.S. 2009. “Shape and depth determinations from second moving average residual self-potential anomalies”, Journal of Geophysics and Engineering, 6(1), 43-52.
  • Babaee, M., Alvandi, A., Zomorrodian, H. 2011. “Estimation of depth and shape factor of buried structure from residual gravity anomaly data”, Australian Journal of Basic and Applied Sciences, 5(11), 2011-2015.
  • Bhattacharyya, B.K. 1966. “Continuous spectrum of the total magnetic field anomaly due to a rectangular prismatic body”, Geophysics, 31(1), 97-121.
  • Bhattacharyya, B.K. 1966. “Two-dimensional harmonic analysis as a tool for magnetic interpretation”, Geophysics, 30(5), 829-857.
  • Demirmen, F. 1965. “Çayırlı ilçesi (Erzincan civarı) genel jeolojisi ve petrol olanakları”, M.T.A. (Turkey) Report No: 4845, 16 (in Turkish, unpublished).
  • Essa, K.S. 2007. “A simple formula for shape and depth determination from residual gravity anomalies”, Acta Geophysica, 55(2), 182-190.
  • Mohan, N.L., Anandababu, L., Roa, S. 1986. “Gravity interpretation using the Mellin transform”, Geophysics, 51(1), 114-122.
  • Nedelkov, I.P., Burnev, P.H. 1962. “Determination of gravitational field in depth”, Geophysical Prospecting, 10(1), 1-18.
  • Odegard, M.E., Berg, J.W. 1965. “Gravity interpretation using the Fourier integral”, Geophysics, 30(3), 424-438.
  • Reid, A.B., Allsop, J.M., Granser, H., Millet, A.J., Somerton, I.W. 1990. “Magnetic interpretation in three dimensions using Euler Deconvolution”, Geophysics, 55(1), 80-91.
  • Rice, S.P., Robertson, A.H.F., Ustaömer, T., İnan, N., Taşlı, K. 2009. “Late Cretaceous-Early Eocene tectonic development of the Tethyan suture zone in the Erzincan area, Eastern Pontides, Turkey”, Geological Magazine, 146(4), 567-590.
  • Salem, A. 2005. “Interpretation of magnetic data using analytic signal derivatives”, Geophysical Prospecting, 53(1), 75-82.
  • Salem, A., Williams, S., Fairhead, J.D., Ravat. D., Smith, R. 2007. “Tilt-depth method: A simple depth estimation method using first-order magnetic derivatives”, The Leading Edge, 26(12), 1502-1505.
  • Spector, A., Bhattacharyya, B.K. 1966. “Energy density spectrum and autocorrelation function of anomalies due to simple magnetic models”, Geophysical Prospecting, 14(3), 242-272.
  • Spector, A., Grant, F.S. 1970. “Statistical models for interpreting aeromagnetic data”, Geophysics, 35(2), 293-302.
  • Tan, A. 2008. “Kuadratik yoğunluk fonksiyonu ile Erzincan-Çayırlı baseninin gravite yorumu”, M.Sc. Thesis, Sakarya University, Sakarya, 41.
  • Thompson, D.T. 1982. “EULDPH-A new technique for making computer-assisted depth estimates from magnetic data”, Geophysics, 47(1), 31-37.
  • Thurston, J.B., Smith, R.S. 1997. “Automatic Conversion of Magnetic Data to Depth, Dip, and Susceptibility Contrast using SPI (TM) Method”, Geophysics, 62(3), 807-813.
  • Werner, R.T. 1953. “Interpretation of magnetic anomalies at sheet-like bodies”, Sveriges Geologiska Undersok, Series C, Arsbok, 6, 413-449.

Estimation of the Depth and Shape of the Source from Derivatives of Residual Gravity Data Using the Parametric Curves Technique: A Case Study from Erzincan-Çayırlı Region, Turkey

Year 2019, Volume: 12 Issue: 1, 294 - 305, 24.03.2019
https://doi.org/10.18185/erzifbed.453364

Abstract

In
this study, the parametric curves technique that estimates the shape and depth
of a buried structure simultaneously, was applied to derivatives of residual
gravity data. This method uses the origin and characteristic points of the
profile data to establish a relationship between the shape and depth of the
source. The first-order derivative of residual gravity data was used for buried
sphere, horizontal cylinder, vertical cylinder and semi-infinite vertical dyke
models, whereas second-order derivative of residual gravity data was used for
vertical fault model. Besides, a software was developed to apply the method on
synthetic and field data by using the .NET Framework 4.5 and C# language. This
method was applied to five synthetic models and the shape factors were
determined for each models. In addition to synthetic examples, a residual gravity
map from Turkey was used to test the validity of the method on real data. Both
proposed method and power spectrum method were applied on three profile data
obtained from the study area and estimated depths were compared with each
other. Finally, a 3D model of the Erzincan-Çayırlı Basin was created using the
estimated depths. 

References

  • Abdelrahman, E.M., Hassanein, H. 2000. “Shape and depth solutions from magnetic data using a parametric relationship”, Geophysics, 65(1), 126-131.
  • Abdelrahman, E.M., El-Araby, T.M., El-Araby, E.M., Abo-Ezz, E.R. 2001. “A new method for shape and depth determinations from gravity data”, Geophysics, 66(6), 1774-1780.
  • Abdelrahman, E.M., El-Araby, T.M., Essa, K.S. 2009. “Shape and depth determinations from second moving average residual self-potential anomalies”, Journal of Geophysics and Engineering, 6(1), 43-52.
  • Babaee, M., Alvandi, A., Zomorrodian, H. 2011. “Estimation of depth and shape factor of buried structure from residual gravity anomaly data”, Australian Journal of Basic and Applied Sciences, 5(11), 2011-2015.
  • Bhattacharyya, B.K. 1966. “Continuous spectrum of the total magnetic field anomaly due to a rectangular prismatic body”, Geophysics, 31(1), 97-121.
  • Bhattacharyya, B.K. 1966. “Two-dimensional harmonic analysis as a tool for magnetic interpretation”, Geophysics, 30(5), 829-857.
  • Demirmen, F. 1965. “Çayırlı ilçesi (Erzincan civarı) genel jeolojisi ve petrol olanakları”, M.T.A. (Turkey) Report No: 4845, 16 (in Turkish, unpublished).
  • Essa, K.S. 2007. “A simple formula for shape and depth determination from residual gravity anomalies”, Acta Geophysica, 55(2), 182-190.
  • Mohan, N.L., Anandababu, L., Roa, S. 1986. “Gravity interpretation using the Mellin transform”, Geophysics, 51(1), 114-122.
  • Nedelkov, I.P., Burnev, P.H. 1962. “Determination of gravitational field in depth”, Geophysical Prospecting, 10(1), 1-18.
  • Odegard, M.E., Berg, J.W. 1965. “Gravity interpretation using the Fourier integral”, Geophysics, 30(3), 424-438.
  • Reid, A.B., Allsop, J.M., Granser, H., Millet, A.J., Somerton, I.W. 1990. “Magnetic interpretation in three dimensions using Euler Deconvolution”, Geophysics, 55(1), 80-91.
  • Rice, S.P., Robertson, A.H.F., Ustaömer, T., İnan, N., Taşlı, K. 2009. “Late Cretaceous-Early Eocene tectonic development of the Tethyan suture zone in the Erzincan area, Eastern Pontides, Turkey”, Geological Magazine, 146(4), 567-590.
  • Salem, A. 2005. “Interpretation of magnetic data using analytic signal derivatives”, Geophysical Prospecting, 53(1), 75-82.
  • Salem, A., Williams, S., Fairhead, J.D., Ravat. D., Smith, R. 2007. “Tilt-depth method: A simple depth estimation method using first-order magnetic derivatives”, The Leading Edge, 26(12), 1502-1505.
  • Spector, A., Bhattacharyya, B.K. 1966. “Energy density spectrum and autocorrelation function of anomalies due to simple magnetic models”, Geophysical Prospecting, 14(3), 242-272.
  • Spector, A., Grant, F.S. 1970. “Statistical models for interpreting aeromagnetic data”, Geophysics, 35(2), 293-302.
  • Tan, A. 2008. “Kuadratik yoğunluk fonksiyonu ile Erzincan-Çayırlı baseninin gravite yorumu”, M.Sc. Thesis, Sakarya University, Sakarya, 41.
  • Thompson, D.T. 1982. “EULDPH-A new technique for making computer-assisted depth estimates from magnetic data”, Geophysics, 47(1), 31-37.
  • Thurston, J.B., Smith, R.S. 1997. “Automatic Conversion of Magnetic Data to Depth, Dip, and Susceptibility Contrast using SPI (TM) Method”, Geophysics, 62(3), 807-813.
  • Werner, R.T. 1953. “Interpretation of magnetic anomalies at sheet-like bodies”, Sveriges Geologiska Undersok, Series C, Arsbok, 6, 413-449.
There are 21 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Makaleler
Authors

Özkan Kafadar 0000-0002-6171-7684

Publication Date March 24, 2019
Published in Issue Year 2019 Volume: 12 Issue: 1

Cite

APA Kafadar, Ö. (2019). Estimation of the Depth and Shape of the Source from Derivatives of Residual Gravity Data Using the Parametric Curves Technique: A Case Study from Erzincan-Çayırlı Region, Turkey. Erzincan University Journal of Science and Technology, 12(1), 294-305. https://doi.org/10.18185/erzifbed.453364