Yüksek Hızlı Oksi- Yakıt Püskürtme Tekniği ile Üretilmiş MCrAlY Esaslı Kaplamaların Sıcak Korozyon Davranışı
Year 2019,
Volume: 12 Issue: 2, 1174 - 1188, 31.08.2019
Yılmaz Yalçın
,
Ramazan Tuncer
,
Muhammet Karabaş
,
Yusuf Kayalı
Abstract
Bu çalışmada küresel grafitli
dökme demir (KGDD) altlıklar Yüksek Hızlı Oksi-Yakıt (HVOF) yöntemi ile Ni
esaslı AMDRY 9624 ve Ni-Co esaslı AMDRY 9951 olmak üzere iki farklı malzeme ile
kaplanmıştır. Kaplamaların mikroyapı ve faz analizleri enerji dağılımlı X-Ray
spektrometreli taramalı elektron mikroskobu (SEM-EDX) ve X ışınları
difraksiyonu (XRD) yöntemleri kullanılarak yapılmıştır. Bu kaplamaların, %50 V2O5
+ %50 Na2SO4 korozif tuz karışımından oluşan ortamda ve
üç farklı sıcaklıkta sıcak korozyon davranışları incelenmiştir. Karakterizasyon
çalışmaları neticesinde dökme demir altlıklar üzerinde yaklaşık 80 µm
kalınlığında yoğun, porozitesiz bir kaplama tabakası elde edildiği ve kaplama
ile altlık malzeme arasında sürekli yapışma sağlandığı görülmüştür. AMDRY 9624
ile kaplanan dökme demirlerin γ ve β intermetalik fazlarını ihtiva ettiği,
AMDRY 9951 ticari toz ile üretilen kaplamanın ise sadece γ fazını ihtiva ettiği
tespit edilmiştir. Sıcak korozyon testleri sonrasında dökme demir altlığın
korozyon tuzlarıyla reaksiyonu sonucu üç sıcaklıkta da FeVO4
korozyon ürünü oluşmuştur. Kaplama uygulaması sonrası ise 500 ºC de tuzların
etkisi ile herhangi bir metal vanadat bileşiği oluşmazken, 600 ve 700 ºC
sıcaklıkta çeşitli metal vanadat korozyon ürünlerinin oluşumu belirlenmiştir.
References
- Cheng, X., Hu, S. B., Song, W. L., & Xiong, X. S. (2013). Improvement in corrosion resistance of a nodular cast iron surface modified by plasma beam treatment. Applied Surface Science, 286, 334-343. doi:10.1016/j.apsusc.2013.09.083
- Davis, J. R. (2004). Handbook of Thermal Spray Technology. ASM International, 338.
- Dudziak, T., Du, H. L., Datta, P. K., Wilson, A., Ross, I. M., Moser, M., & Braun, R. (2009). Sulphidation/oxidation behaviour of TiAlCr and Al2Au coated Ti45Al8Nb alloy at 750 degrees C. Corrosion Science, 51(5), 1189-1196. doi:10.1016/j.corsci.2009.02.015
- El-Kashif, E., El-Banna, E., & Riad, S. (2003). Stepped austempering of GGG 40 ductile cast iron. ISIJ international, 43(7), 1056-1062.
- Faizul Idham, M. A., Bulan & Syarif, Junaidi & Jaffar, Ahmed & Alias, Siti & Saad, Nor. (2003). Microstructure and XRD of Ductile Iron Using Annealing-Tempering Heat Treatment Process. Applied Mechanics and Materials, 393, 83-87.
- Fauchais, P., & Vardelle, A. (2012). Thermal sprayed coatings used against corrosion and corrosive wear. In Advanced plasma spray applications: InTech.
- Fernandes, F., Cavaleiro, A., & Loureiro, A. (2012). Oxidation behavior of Ni-based coatings deposited by PTA on gray cast iron. Surface & Coatings Technology, 207, 196-203. doi:10.1016/j.surfcoat.2012.06.070
- Grewal, P. S., Chawla, V., & Grewal, J. S. (2011). High Velocity Oxy-fuel Sprayed Coatings- a Review. Journal of the Australian Ceramic Society, 47(2), 30-36.
- Huang, Z. W., Wang, Z. G., Zhu, S. J., Yuan, F. H., & Wang, F. G. (2008). Effect of HVOF sprayed MCrAIY coating on thermomechanical and isothermal fatigue life of superalloy M963. Surface Engineering (Icse 2007), 373-374, 23-+. doi:DOI 10.4028/www.scientific.net/KEM.373-374.23
- Itoh, Y., Saitoh, M., & Tamura, M. (2000). Characteristics of MCrAIY coatings sprayed by high velocity oxygen-fuel spraying system. Journal of Engineering for Gas Turbines and Power-Transactions of the Asme, 122(1), 43-49. doi:Doi 10.1115/1.483173
- Jegadeeswaran, N., Ramesh, M., & Bhat, K. U. (2013). Combating Corrosion Degradation of Turbine Materials Using HVOF Sprayed 25%(Cr 3 C 2-25 (Ni20Cr))+ NiCrAlY Coating. International Journal of Corrosion.
- Joshi, S. V., & Sivakumar, R. (1991). Particle Behavior during High-Velocity Oxy Fuel Spraying. Surface & Coatings Technology, 50(1), 67-74. doi:Doi 10.1016/0257-8972(91)90195-3
- Koutsky, J. (2004). High Velocity Oxy-Fuel spraying. Journal of Materials Processing Technology, 157, 557-560. doi:10.1016/j.jmatprotec.2004.07.114
- Lestan, Z., Milfelner, M., Balic, J., Brezocnik, M., & Karabegovic, I. (2013). Laser deposition of Metco 15E, Colmony 88 and VIM CRU 20 powders on cast iron and low carbon steel. International Journal of Advanced Manufacturing Technology, 66(9-12), 2023-2028. doi:10.1007/s00170-012-4478-4
- Liu, J. L., Shi, G. Q., Ding, P. D., Ye, H., & Ou, Z. X. (1997). Features of laser alloying of grey cast iron. Lasers in Engineering, 6(2), 81-101.
- Maco, A. L., & Belzunce, F. J. (1998). Laser surface hardening of gray cast irons. Revista De Metalurgia, 34(2), 126-130. doi:DOI 10.3989/revmetalm.1998.v34.i2.674
- Montero, X., & Galetz, M. C. (2018). Sulfate–Vanadate-Induced Corrosion of Different Alloys. Oxidation of Metals, 89(3), 499-516. doi:10.1007/s11085-017-9831-4
- O'Rourke, R. (2001). Cast iron: The engineered metal. Advanced Materials & Processes, 159(1), 65-68.
- Ocelik, V., de Oliveira, U., de Boer, M., & de Hosson, J. T. M. (2007). Thick Co-based coating on cast iron by side laser cladding: Analysis of processing conditions and coating properties. Surface & Coatings Technology, 201(12), 5875-5883. doi:10.1016/j.surfcoat.2006.10.044
- Saeidi, S., Voisey, K. T., & McCartney, D. G. (2009). The Effect of Heat Treatment on the Oxidation Behavior of HVOF and VPS CoNiCrAlY Coatings. Journal of Thermal Spray Technology, 18(2), 209-216.
- Saeidi, S., Voisey, K. T., & McCartney, D. G. (2011). Mechanical Properties and Microstructure of VPS and HVOF CoNiCrAlY Coatings. Journal of Thermal Spray Technology, 20(6), 1231-1243.
- Seiersten, M., & Kofstad, P. (1987). Sodium Vanadate-Induced Corrosion of Nickel and Mcraiy Coatings on Inconel-600. Materials Science and Technology, 3(7), 576-583. doi:Doi 10.1080/02670836.1987.11782270
- Seo, D., & Ogawa, K. (2012). Isothermal Oxidation Behavior of Plasma Sprayed MCrAlY Coatings. In Advanced Plasma Spray Applications: InTech.
- Shibata, M., Kuroda, S., Watanabe, M., & Sakamoto, Y. (2006). Oxidation property of CoNiCrAlY coatings prepared by various thermal spraying techniques. High-Temperature Oxidation and Corrosion 2005, 522-523, 339-344. doi:DOI 10.4028/www.scientific.net/MSF.522-523.339
- Singh, R. (2009). Cast Iron Metallurgy. Materials Performance, 48(9), 58-61.
- Taheri, M., Valefi, Z., & Zangeneh-Madar, K. (2012). Influence of HVOF process parameters on microstructure and bond strength of NiCrAlY coatings. Surface Engineering, 28(4), 266-272. doi:10.1179/1743294411Y.0000000024
- Vetter, J., Barbezat, G., Crummenauer, J., & Avissar, J. (2005). Surface treatment selections for automotive applications. Surface & Coatings Technology, 200(5-6), 1962-1968. doi:DOI 10.1016/j.surfcoat.2005.08.011
- Wright, I. G., & Pint, B. A. (2005). Bond coating issues in thermal barrier coatings for industrial gas turbines. Proceedings of the Institution of Mechanical Engineers Part a-Journal of Power and Energy, 219(A2), 101-107. doi:10.1243/095765005x6836
- Yoganandh, J., Natarajan, S., & Babu, S. P. K. (2013). Erosion Behaviour of WC-Co-Cr Thermal Spray Coated Grey Cast Iron under Mining Environment. Transactions of the Indian Institute of Metals, 66(4), 437-443. doi:10.1007/s12666-013-0262-x
Hot Corrosion Behaviour of MCrAlY Based Coatings Fabricated by High Velocity Oxy-Fuel
Year 2019,
Volume: 12 Issue: 2, 1174 - 1188, 31.08.2019
Yılmaz Yalçın
,
Ramazan Tuncer
,
Muhammet Karabaş
,
Yusuf Kayalı
Abstract
In this study, ductile cast
irons (DCI) were coated with two different AMDRY 9624 Ni based and AMDRY 9951
Ni-Co based materials by HVOF method. Microstructure and phase analyzes of the
coatings were performed to by using Scaning electron microscopy equipped with
Energy-dispersive X-ray spectroscopy (SEM-EDX) and X-Ray difraction (XRD)
methods. Hot corrosion behavior of DCI are investigated by using %50 V2O5
+ %50 Na2SO4 salts. As a result of the characterization
studies it was observed that a dense non-porous coating layer of about 80 μm
thickness was obtained on the cast iron samples and continuous adhesion was
provided between the coating and the substrate. It has been determined that the
cast iron coated with AMDRY 9624 contains γ and β intermetallic phases and the
coating produced with AMDRY 9951 commercial powder containsonly γ phase. After
the hot corrosion tests, The characterization studies reveal that the reaction
of the cast iron substrate with corrosive salts resulted in the formation of
FeVO4 corrosion product at all three temperatures. After coating
application, no metal vanadate compound was formed by the reaction of salts
with the coatings at 500 ºC. The formation of various metal vanadate corrosion
products at 600 and 700 ºC temperature was determined.
References
- Cheng, X., Hu, S. B., Song, W. L., & Xiong, X. S. (2013). Improvement in corrosion resistance of a nodular cast iron surface modified by plasma beam treatment. Applied Surface Science, 286, 334-343. doi:10.1016/j.apsusc.2013.09.083
- Davis, J. R. (2004). Handbook of Thermal Spray Technology. ASM International, 338.
- Dudziak, T., Du, H. L., Datta, P. K., Wilson, A., Ross, I. M., Moser, M., & Braun, R. (2009). Sulphidation/oxidation behaviour of TiAlCr and Al2Au coated Ti45Al8Nb alloy at 750 degrees C. Corrosion Science, 51(5), 1189-1196. doi:10.1016/j.corsci.2009.02.015
- El-Kashif, E., El-Banna, E., & Riad, S. (2003). Stepped austempering of GGG 40 ductile cast iron. ISIJ international, 43(7), 1056-1062.
- Faizul Idham, M. A., Bulan & Syarif, Junaidi & Jaffar, Ahmed & Alias, Siti & Saad, Nor. (2003). Microstructure and XRD of Ductile Iron Using Annealing-Tempering Heat Treatment Process. Applied Mechanics and Materials, 393, 83-87.
- Fauchais, P., & Vardelle, A. (2012). Thermal sprayed coatings used against corrosion and corrosive wear. In Advanced plasma spray applications: InTech.
- Fernandes, F., Cavaleiro, A., & Loureiro, A. (2012). Oxidation behavior of Ni-based coatings deposited by PTA on gray cast iron. Surface & Coatings Technology, 207, 196-203. doi:10.1016/j.surfcoat.2012.06.070
- Grewal, P. S., Chawla, V., & Grewal, J. S. (2011). High Velocity Oxy-fuel Sprayed Coatings- a Review. Journal of the Australian Ceramic Society, 47(2), 30-36.
- Huang, Z. W., Wang, Z. G., Zhu, S. J., Yuan, F. H., & Wang, F. G. (2008). Effect of HVOF sprayed MCrAIY coating on thermomechanical and isothermal fatigue life of superalloy M963. Surface Engineering (Icse 2007), 373-374, 23-+. doi:DOI 10.4028/www.scientific.net/KEM.373-374.23
- Itoh, Y., Saitoh, M., & Tamura, M. (2000). Characteristics of MCrAIY coatings sprayed by high velocity oxygen-fuel spraying system. Journal of Engineering for Gas Turbines and Power-Transactions of the Asme, 122(1), 43-49. doi:Doi 10.1115/1.483173
- Jegadeeswaran, N., Ramesh, M., & Bhat, K. U. (2013). Combating Corrosion Degradation of Turbine Materials Using HVOF Sprayed 25%(Cr 3 C 2-25 (Ni20Cr))+ NiCrAlY Coating. International Journal of Corrosion.
- Joshi, S. V., & Sivakumar, R. (1991). Particle Behavior during High-Velocity Oxy Fuel Spraying. Surface & Coatings Technology, 50(1), 67-74. doi:Doi 10.1016/0257-8972(91)90195-3
- Koutsky, J. (2004). High Velocity Oxy-Fuel spraying. Journal of Materials Processing Technology, 157, 557-560. doi:10.1016/j.jmatprotec.2004.07.114
- Lestan, Z., Milfelner, M., Balic, J., Brezocnik, M., & Karabegovic, I. (2013). Laser deposition of Metco 15E, Colmony 88 and VIM CRU 20 powders on cast iron and low carbon steel. International Journal of Advanced Manufacturing Technology, 66(9-12), 2023-2028. doi:10.1007/s00170-012-4478-4
- Liu, J. L., Shi, G. Q., Ding, P. D., Ye, H., & Ou, Z. X. (1997). Features of laser alloying of grey cast iron. Lasers in Engineering, 6(2), 81-101.
- Maco, A. L., & Belzunce, F. J. (1998). Laser surface hardening of gray cast irons. Revista De Metalurgia, 34(2), 126-130. doi:DOI 10.3989/revmetalm.1998.v34.i2.674
- Montero, X., & Galetz, M. C. (2018). Sulfate–Vanadate-Induced Corrosion of Different Alloys. Oxidation of Metals, 89(3), 499-516. doi:10.1007/s11085-017-9831-4
- O'Rourke, R. (2001). Cast iron: The engineered metal. Advanced Materials & Processes, 159(1), 65-68.
- Ocelik, V., de Oliveira, U., de Boer, M., & de Hosson, J. T. M. (2007). Thick Co-based coating on cast iron by side laser cladding: Analysis of processing conditions and coating properties. Surface & Coatings Technology, 201(12), 5875-5883. doi:10.1016/j.surfcoat.2006.10.044
- Saeidi, S., Voisey, K. T., & McCartney, D. G. (2009). The Effect of Heat Treatment on the Oxidation Behavior of HVOF and VPS CoNiCrAlY Coatings. Journal of Thermal Spray Technology, 18(2), 209-216.
- Saeidi, S., Voisey, K. T., & McCartney, D. G. (2011). Mechanical Properties and Microstructure of VPS and HVOF CoNiCrAlY Coatings. Journal of Thermal Spray Technology, 20(6), 1231-1243.
- Seiersten, M., & Kofstad, P. (1987). Sodium Vanadate-Induced Corrosion of Nickel and Mcraiy Coatings on Inconel-600. Materials Science and Technology, 3(7), 576-583. doi:Doi 10.1080/02670836.1987.11782270
- Seo, D., & Ogawa, K. (2012). Isothermal Oxidation Behavior of Plasma Sprayed MCrAlY Coatings. In Advanced Plasma Spray Applications: InTech.
- Shibata, M., Kuroda, S., Watanabe, M., & Sakamoto, Y. (2006). Oxidation property of CoNiCrAlY coatings prepared by various thermal spraying techniques. High-Temperature Oxidation and Corrosion 2005, 522-523, 339-344. doi:DOI 10.4028/www.scientific.net/MSF.522-523.339
- Singh, R. (2009). Cast Iron Metallurgy. Materials Performance, 48(9), 58-61.
- Taheri, M., Valefi, Z., & Zangeneh-Madar, K. (2012). Influence of HVOF process parameters on microstructure and bond strength of NiCrAlY coatings. Surface Engineering, 28(4), 266-272. doi:10.1179/1743294411Y.0000000024
- Vetter, J., Barbezat, G., Crummenauer, J., & Avissar, J. (2005). Surface treatment selections for automotive applications. Surface & Coatings Technology, 200(5-6), 1962-1968. doi:DOI 10.1016/j.surfcoat.2005.08.011
- Wright, I. G., & Pint, B. A. (2005). Bond coating issues in thermal barrier coatings for industrial gas turbines. Proceedings of the Institution of Mechanical Engineers Part a-Journal of Power and Energy, 219(A2), 101-107. doi:10.1243/095765005x6836
- Yoganandh, J., Natarajan, S., & Babu, S. P. K. (2013). Erosion Behaviour of WC-Co-Cr Thermal Spray Coated Grey Cast Iron under Mining Environment. Transactions of the Indian Institute of Metals, 66(4), 437-443. doi:10.1007/s12666-013-0262-x