BibTex RIS Cite

Robotic Total Station and Analysis of GNSS Measurements

Year 2019, Volume: 12 Issue: 2, 1018 - 1027, 31.08.2019
https://doi.org/10.18185/erzifbed.541895

Abstract



In this study, the usability of
the Robotic Total Station (RTS) and Global Navigation Satellite System (GNSS)
measurements in the determination of the relative displacements of the structures
were investigated and analyzed with experimental data. For this purpose, two
GNSS receiver antennas and Total Station prisma reflectors were installed at
the observable height of a high structure in Istanbul. At these two
observation points, Real Time GNSS measurements and angle-distance-zenite
measurements were performed simultaneously using two RTSs from the monitoring
points located at a distance of approximately 580 m. Thus, the time series of
these observations were analyzed to determine and compare the amplitude of
oscillation of the structure. As a result of the analysis, the following
results were obtained; While it was possible to determine the oscillations of
0.5-1 cm amplitude with the centimeter accuracy with GNSS measurements, the oscillations
with amplitude with a few mm accuracy (2 mm) with RTS measurements could be
recorded but high frequency displacements values ​​could not be determined.
These results demonstrated the availability of automated Totalstation systems
for the determination of structural displacements as an alternative to GNSS
.


 


References

  • Brownjohn, J., Rizos, C., Tan, G. H. and Pan, T. C., 2004, RealTime Long-Term Monitoring of Static and Dynamic Displacements of an Office Tower, Combining RTK GPS and Accelerometer Data, 1st FIG International Symposium on Engineering Surveys for Construction Works and Structural Engineering, 28 June–1 July, Nottingham, UK.
  • Chan W.S. Xu Y.L. Ding X.L. Dai W.J. 2006. An integrated GPS-accelerometer data processingtechnique for structural deformation monitoring. J. Geodesy 2006, 80, 705–719.Erol B. 2010. Evaluation of High-Precision Sensors in Structural Monitoring. Sensors 2010, 10, 10803-10827; doi:10.3390/s101210803. ISSN 1424-8220 www.mdpi.com/journal/sensors.
  • Ge, L., Han S., Rizos C., Ishikawa Y., Hoshiba M., Yoshida Y., Izawa M., Hashimoto N., and Himori S., 2000. GPS seismometers with up to 20-Hz sampling rate. Earth Planets and Space, 52(10): 881–884.
  • Greulich, G., 1997. Dynamic deformation monitoring of tall structure using GPS technology - Discussion. Journal of Surveying Engineering-Asce, 123(1), 49-50.
  • Guo, J., Xu, L., Dai, L., McDonald, M., Wu, J., Li, Y., 2005. Application of the real-time kinematic Global Positioning System in bridge safety monitoring. Journal of Bridge Engineering, 10(2), 163-168.
  • Lienhart W., Ehrhart M., and Grick M., 2016. High frequent total station measurements for the monitoring of bridge vibrations, J. Appl. Geodesy 2017; 11(1): 1–8, DOI 10.1515.
  • Panos A. Psimoulis & Stathis C. Stiros., 2008. Experimental Assessment of the Accuracy of GPS and RTS for the Determination of the Parameters of Oscillation of Major Structures, Computer-Aided Civil and Infrastructure Engineering 23 (2008) 389–403.
  • Pehlivan H., Bayata H. F. 2014. “Comparison of GPS and Inclinometer Data in Structural Monitoring”, the First International Conference on Engineering and Applied Sciences Optimization (OPT-i), the Island of Kos, Greece, on 4-6 June 2014. ISSN: 2241-9098, ISBN: 978-960-99994-5-8.
  • Pehlivan H. 2013. Spectral Analysis of Real-Time Kinematic GPS Data, Harita Dergisi, 2013/149, Harita Genel Komutanlığı, Ankara, Turkiye.Pehlivan H. 2009. The Investigation of Dynamic Behaviors in Structures With Real-Time Kinematic GPS, PhD Thesis. Yildiz Technical University, Istanbul, Turkiye.
  • Psimoulis, P. and Stiros, S., 2002, Measuring deflections of a short-span railway bridge using a Robotic Total Station (RTS), Journal of Bridge Engineering (ASCE), in press, 2012.
  • Psimoulis, P., Stiros, S., 2011, Robotic Theodolites (RTS) Measuring Structure Excitation, GIM International, 25(4), 29-33, 2011 (http://www.gim-international.com/issues/articles/id1693-Robotic_Theodolites_RTS.html)
  • Psimoulis, P., Pytharouli, S., Karambalis, D., Stiros, S., 2008, Potential of Global Positioning System (GPS) to measure frequencies of oscillation of engineering structures, Journal of Sound and Vibration 318(3), 606-623, 2008.
  • Psimoulis, P., Stiros, S., 2008, Experimental assessment of the accuracy of GPS and RTS for the determination of the parameters of oscillation of major structures, Computer-Aided Civil and Infrastructure Engineering, 23, 389-403, 2008
  • Psimoulis, P., Stiros, S., 2007. Measurement of deflections and of oscillation frequencies of engineering structures using Robotic Theodolites (RTS), Engineering Structures, 29 (12), 3312-3324, 2007.
  • Pytharouli, S., Stiros, S., 2008. Spectral Analysis of Unevenly Spaced or Discontinuous Data Using the ‘Normperiod’ Code, Computers and Structures, 86(1-2), pp190-196.
  • Moschas, F, Stiros, S., 2011. Measurement of the dynamic displacements and of the modal frequencies of a short-span pedestrian bridge using GPS and an accelerometer. Engineering Structures, 33, 10-17, 2011.
  • Moschas, F., Psimoulis, P. and Stiros, S., 2012. GPS-RTS data fusion to overcome signal deficiencies in certain bridge dynamic monitoring projects, Smart Structures and Systems, Special Issue: “Intelligent Information Processing Technology in Structural Health Monitoring”, in press, 2012.
  • Stiros, S. and Psimoulis, P., 2012. Response of a historical short-span railway bridge to passing trains: 3-D deflections and dominant frequencies derived from Robotic Total Station (RTS) measurements. Engineering Structures, 45, 362-371, 2012
  • Schofield, W., Breach, M., 2007: Engineering Surveying. UK : Elsevier Ltd., 2007. 622 pp. ISBN 978-0-7506-6948-8.Xia, H., and Zhang, N., 2005. Dynamic Analysis of Railway Bridge under High-speed Trains, Computers and Structures, 83, pp1891-190.
  • Kontogianni, V., Kornarou, S., Stiros, S., 2007. Monitoring with electronic total stations: Performance and accuracy of prismatic and non-prismatic reflectors. Geotech, 25, 30–37.
  • Stiros S, Psimoulis P, Kokkinou E., 2008. Errors introduced by fluctuations in the sampling rate of automatically recording instruments: Experimental and theoretical approach. Journal of Surveying Engineering; 134(3):89–93.
  • Xu L., Guo J., , Jiang J., 2002. Time–frequency analysis of a suspension bridge based on GPS, Journal of Sound and Vibration 254 (1) (2002) 105–116.

Robotik Total Station ve GNSS Ölçümlerinin Analizi

Year 2019, Volume: 12 Issue: 2, 1018 - 1027, 31.08.2019
https://doi.org/10.18185/erzifbed.541895

Abstract

Bu çalışmada,
yapıların bağıl deplasmanlarının belirlenmesinde, Robotik Total Station (RTS)
ve Global Navigation Satellite System (GNSS) ölçümlerinin kullanılabilirliği
araştırılmış ve deneysel verilerle analiz edilmiştir. Bu amaçla, İstanbul'da
bulunan yüksek bir yapının gözlemlenebilir yükseklikte tepesine, iki adet GNSS
alıcı anteni ve Total Station prisma reflektörleri monte edilmiştir. Bu iki
gözlem noktasında, Gerçek Zamanlı GNSS ölçümleri ve yaklaşık 520 m uzaklıkta
bulunan izleme noktalarından iki adet RTS kullanılarak açı-mesafe-zenit
öçümleri, eş zamanlı olarak gerçekleştirilmiştir. Böylece, kayıt edilen bu
gözlem serileri analiz edilerek yapının salınım genliklerinin belirlenmesi ve
karşılaştırılması hedeflenmiştir. Analiz sonucunda şu sonuçlar elde edilmiştir;
GNSS ölçümleri ile centimeter doğrulukla 0.5-1 cm genlikli salınımlar
belirlemek mümkün olmuşken, RTS ölçümleri ile birkaç mm doğrulukla (2 mm)
genlikli salınımlar kayıt edilebilmiş ancak yüksek frekanslı yerdeğiştirme
değerleri belirlenememiştir. Bu sonuçlar, otomatize edilen Elektronik
Totalstation'ların GNSS’e bir alternatif olarak yapı deplasmanlarının
belirlenmesinde kullanılabilirliğini göstermiştir.

References

  • Brownjohn, J., Rizos, C., Tan, G. H. and Pan, T. C., 2004, RealTime Long-Term Monitoring of Static and Dynamic Displacements of an Office Tower, Combining RTK GPS and Accelerometer Data, 1st FIG International Symposium on Engineering Surveys for Construction Works and Structural Engineering, 28 June–1 July, Nottingham, UK.
  • Chan W.S. Xu Y.L. Ding X.L. Dai W.J. 2006. An integrated GPS-accelerometer data processingtechnique for structural deformation monitoring. J. Geodesy 2006, 80, 705–719.Erol B. 2010. Evaluation of High-Precision Sensors in Structural Monitoring. Sensors 2010, 10, 10803-10827; doi:10.3390/s101210803. ISSN 1424-8220 www.mdpi.com/journal/sensors.
  • Ge, L., Han S., Rizos C., Ishikawa Y., Hoshiba M., Yoshida Y., Izawa M., Hashimoto N., and Himori S., 2000. GPS seismometers with up to 20-Hz sampling rate. Earth Planets and Space, 52(10): 881–884.
  • Greulich, G., 1997. Dynamic deformation monitoring of tall structure using GPS technology - Discussion. Journal of Surveying Engineering-Asce, 123(1), 49-50.
  • Guo, J., Xu, L., Dai, L., McDonald, M., Wu, J., Li, Y., 2005. Application of the real-time kinematic Global Positioning System in bridge safety monitoring. Journal of Bridge Engineering, 10(2), 163-168.
  • Lienhart W., Ehrhart M., and Grick M., 2016. High frequent total station measurements for the monitoring of bridge vibrations, J. Appl. Geodesy 2017; 11(1): 1–8, DOI 10.1515.
  • Panos A. Psimoulis & Stathis C. Stiros., 2008. Experimental Assessment of the Accuracy of GPS and RTS for the Determination of the Parameters of Oscillation of Major Structures, Computer-Aided Civil and Infrastructure Engineering 23 (2008) 389–403.
  • Pehlivan H., Bayata H. F. 2014. “Comparison of GPS and Inclinometer Data in Structural Monitoring”, the First International Conference on Engineering and Applied Sciences Optimization (OPT-i), the Island of Kos, Greece, on 4-6 June 2014. ISSN: 2241-9098, ISBN: 978-960-99994-5-8.
  • Pehlivan H. 2013. Spectral Analysis of Real-Time Kinematic GPS Data, Harita Dergisi, 2013/149, Harita Genel Komutanlığı, Ankara, Turkiye.Pehlivan H. 2009. The Investigation of Dynamic Behaviors in Structures With Real-Time Kinematic GPS, PhD Thesis. Yildiz Technical University, Istanbul, Turkiye.
  • Psimoulis, P. and Stiros, S., 2002, Measuring deflections of a short-span railway bridge using a Robotic Total Station (RTS), Journal of Bridge Engineering (ASCE), in press, 2012.
  • Psimoulis, P., Stiros, S., 2011, Robotic Theodolites (RTS) Measuring Structure Excitation, GIM International, 25(4), 29-33, 2011 (http://www.gim-international.com/issues/articles/id1693-Robotic_Theodolites_RTS.html)
  • Psimoulis, P., Pytharouli, S., Karambalis, D., Stiros, S., 2008, Potential of Global Positioning System (GPS) to measure frequencies of oscillation of engineering structures, Journal of Sound and Vibration 318(3), 606-623, 2008.
  • Psimoulis, P., Stiros, S., 2008, Experimental assessment of the accuracy of GPS and RTS for the determination of the parameters of oscillation of major structures, Computer-Aided Civil and Infrastructure Engineering, 23, 389-403, 2008
  • Psimoulis, P., Stiros, S., 2007. Measurement of deflections and of oscillation frequencies of engineering structures using Robotic Theodolites (RTS), Engineering Structures, 29 (12), 3312-3324, 2007.
  • Pytharouli, S., Stiros, S., 2008. Spectral Analysis of Unevenly Spaced or Discontinuous Data Using the ‘Normperiod’ Code, Computers and Structures, 86(1-2), pp190-196.
  • Moschas, F, Stiros, S., 2011. Measurement of the dynamic displacements and of the modal frequencies of a short-span pedestrian bridge using GPS and an accelerometer. Engineering Structures, 33, 10-17, 2011.
  • Moschas, F., Psimoulis, P. and Stiros, S., 2012. GPS-RTS data fusion to overcome signal deficiencies in certain bridge dynamic monitoring projects, Smart Structures and Systems, Special Issue: “Intelligent Information Processing Technology in Structural Health Monitoring”, in press, 2012.
  • Stiros, S. and Psimoulis, P., 2012. Response of a historical short-span railway bridge to passing trains: 3-D deflections and dominant frequencies derived from Robotic Total Station (RTS) measurements. Engineering Structures, 45, 362-371, 2012
  • Schofield, W., Breach, M., 2007: Engineering Surveying. UK : Elsevier Ltd., 2007. 622 pp. ISBN 978-0-7506-6948-8.Xia, H., and Zhang, N., 2005. Dynamic Analysis of Railway Bridge under High-speed Trains, Computers and Structures, 83, pp1891-190.
  • Kontogianni, V., Kornarou, S., Stiros, S., 2007. Monitoring with electronic total stations: Performance and accuracy of prismatic and non-prismatic reflectors. Geotech, 25, 30–37.
  • Stiros S, Psimoulis P, Kokkinou E., 2008. Errors introduced by fluctuations in the sampling rate of automatically recording instruments: Experimental and theoretical approach. Journal of Surveying Engineering; 134(3):89–93.
  • Xu L., Guo J., , Jiang J., 2002. Time–frequency analysis of a suspension bridge based on GPS, Journal of Sound and Vibration 254 (1) (2002) 105–116.
There are 22 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Makaleler
Authors

Hüseyin Pehlivan 0000-0002-0018-6912

Publication Date August 31, 2019
Published in Issue Year 2019 Volume: 12 Issue: 2

Cite

APA Pehlivan, H. (2019). Robotik Total Station ve GNSS Ölçümlerinin Analizi. Erzincan University Journal of Science and Technology, 12(2), 1018-1027. https://doi.org/10.18185/erzifbed.541895