Research Article
BibTex RIS Cite

Antinörodejeneratif 5-sübstitüe 2,4-tiyazolidindion Türevlerinin Kuantum Kimyasal İncelemesi

Year 2021, Volume: 14 Issue: 1, 93 - 116, 31.03.2021
https://doi.org/10.18185/erzifbed.856269

Abstract

Antihiperglisemik, antikanser, antioksidan ve antinörodejeneratif gibi farklı farmakolojik özellikler gösteren 5-sübstitüe 2,4-tiazolidindion türevleri, elektronik ve geometrik özelliklerini aydınlatmak amacıyla kuantum kimyasal olarak incelenmiştir. Bileşiklerin üç boyutlu yapıları B3LYP fonksiyoneli ile üç farklı temel set (6-31G, 6-31G(d) ve 6-31G(d,p)) kullanılarak optimize edilmiştir. Mulliken yükleri, dipol momentleri, HOMO ve LUMO enerjileri de aynı yöntem ile hesaplanmıştır. Hesaplanan geometrik parametreler, farklı temel setler için deneysel sonuçlar ile karşılaştırılmıştır. Elde edilen kuantum kimyasal hesaplama sonuçlarına göre, teorik bağ uzunlukları ve açıları deneysel verilerle uyum içerisindedir. HOMO ve LUMO enerji değerleri farkı analiz edildiğinde, ele alınan 5-sübstitüe 2,4-tiazolidindion türevleri içerisinde 24 numaralı bileşiğin en reaktif bileşik olduğu belirlenmiştir.

References

  • Alzheimer’s Association (2019) Alzheimer’s Disase Facts and Figures. Alzhimers Dement, 15(3):321-87.
  • Bahare, R. S., Ganguly, S., Choowongkomon, K., & Seetaha, S. (2015). Synthesis, HIV-1 RT inhibitory, antibacterial, antifungal and binding mode studies of some novel N-substituted 5-benzylidine-2,4-thiazolidinediones. DARU, Journal of Pharmaceutical Sciences, 23(1). https://doi.org/10.1186/s40199-014-0086-1
  • Balsinha, C., Gonçalves-Pereira, M., Iliffe, S., Freitas, J. A., & Grave, J. (2019). World Alzheimer Report 2019. Alzheimer’s Disease International. https://doi.org/10.1007/978-3-030-10814-4_23
  • Becke, A. D. (1993). A new mixing of Hartree-Fock and local density-functional theories. The Journal of Chemical Physics, 98(2), 1372–1377. https://doi.org/10.1063/1.464304
  • Becke, A. D. (1993). Density-functional thermochemistry. III. The role of exact exchange. The Journal of Chemical Physics, 98(7), 5648–5652. https://doi.org/10.1063/1.464913
  • Cummings, J. L., Morstorf, T., & Zhong, K. (2014). Alzheimer’s disease drug-development pipeline: Few candidates, frequent failures. Alzheimer’s Research and Therapy, 6(4), 37. https://doi.org/10.1186/alzrt269
  • Day, C. (1999). Thiazolidinediones: A new class of antidiabetic drugs. Diabetic Medicine, 16(3), 179–192. https://doi.org/10.1046/j.1464-5491.1999.00023.x
  • Desai, A., & Grossberg, G. (2001). Review of rivastigmine and its clinical applications in Alzheimer’s disease and related disorders. Expert Opinion on Pharmacotherapy, 2(4), 653–666. https://doi.org/10.1517/14656566.2.4.653
  • Form, G. R., Raper, E. S., & Downie, T. C. (1975). The crystal and molecular structure of thiazolidine-2,4-dione. Acta Crystallographica Section B Structural Crystallography and Crystal Chemistry, 31(9), 2181–2184. https://doi.org/10.1107/s0567740875007212
  • Gandini, A., Bartolini, M., Tedesco, D., Martinez-Gonzalez, L., Roca, C., Campillo, N. E., … Bolognesi, M. L. (2018). Tau-Centric Multitarget Approach for Alzheimer’s Disease: Development of First-in-Class Dual Glycogen Synthase Kinase 3β and Tau-Aggregation Inhibitors. Journal of Medicinal Chemistry, 61(17), 7640–7656. https://doi.org/10.1021/acs.jmedchem.8b00610
  • González, J. F., Alcántara, A. R., Doadrio, A. L., & Sánchez-Montero, J. M. (2019). Developments with multi-target drugs for Alzheimer’s disease: an overview of the current discovery approaches. Expert Opinion on Drug Discovery, 14:9, 879–891. https://doi.org/10.1080/17460441.2019.1623201
  • Holmes, C., Wilkinson, D., Dean, C., Vethanayagam, S., Olivieri, S., Langley, A., … Damms, J. (2004). The efficacy of donepezil in the treatment of neuropsychiatric symptoms in Alzheimer disease. Neurology, 63(2), 214 LP – 219. https://doi.org/10.1212/01.WNL.0000129990.32253.7B
  • Hughes, R. E., Nikolic, K., & Ramsay, R. R. (2016). One for all? Hitting multiple Alzheimer’s disease targets with one drug. Frontiers in Neuroscience, 10(APR), 1–10. https://doi.org/10.3389/fnins.2016.00177
  • Hyde, C., Peters, J., Bond, M., Rogers, G., Hoyle, M., Anderson, R., … Moxham, T. (2013). Evolution of the evidence on the effectiveness and cost-effectiveness of acetylcholinesterase inhibitors and memantine for Alzheimer’s disease: Systematic review and economic model. Age and Ageing, 42(1), 14–20. https://doi.org/10.1093/ageing/afs165
  • Kumar, A., Tiwari, A., & Sharma, A. (2018). Changing Paradigm from one Target one Ligand Towards Multi-target Directed Ligand Design for Key Drug Targets of Alzheimer Disease: An Important Role of In Silico Methods in Multi-target Directed Ligands Design. Current Neuropharmacology, 16(6), 726–739. https://doi.org/10.2174/1570159x16666180315141643
  • Lao, K., Ji, N., Zhang, X., Qiao, W., Tang, Z., & Gou, X. (2019). Drug development for Alzheimer’s disease: review. Journal of Drug Targeting, 27(2), 164–173. https://doi.org/10.1080/1061186X.2018.1474361
  • Lee, C., Yang, W., & Parr, R. G. (1988). Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Physical Review B, 37(2), 785–789. https://doi.org/10.1103/PhysRevB.37.785
  • Liu, Y., Nguyen, M., Robert, A., & Meunier, B. (2019). Metal Ions in Alzheimer’s Disease: A Key Role or Not? Accounts of Chemical Research, 52(7), 2026–2035. https://doi.org/10.1021/acs.accounts.9b00248
  • Masters, C. L., Bateman, R., Blennow, K., Rowe, C. C., Sperling, R. A., & Cummings, J. L. (2015). Alzheimer’s disease. Nature Reviews Disease Primers, 1, 1–18. https://doi.org/10.1038/nrdp.2015.56
  • M. J. Frisch, G., Trucks, W., Schlegel, H. B. ., Scuseria, G. E. ., Robb, M. A. ., Cheeseman, J. R., … Fox, D. J. (2009). Gaussian 09, Revision E. 01; Gaussian. Gaussian, Inc.: Wallingford, CT. https://doi.org/111
  • Mulliken, R. S. (1955). Electronic population analysis on LCAO-MO molecular wave functions. I. The Journal of Chemical Physics, 23(10), 1833–1840. https://doi.org/10.1063/1.1740588
  • Mulliken, R. S. (1955). Electronic population analysis on LCAO-MO molecular wave functions. II. Overlap populations, bond orders, and covalent bond energies. The Journal of Chemical Physics, 23(10), 1841–1846. https://doi.org/10.1063/1.1740589
  • Mulliken, R. S. (1955). Electronic population analysis on LCAO-MO molecular wave functions. III. effects of hybridization on overlap and gross AO populations. The Journal of Chemical Physics, 23(12), 2338–2342. https://doi.org/10.1063/1.1741876
  • Naim, M. J., Alam, M. J., Ahmad, S., Nawaz, F., Shrivastava, N., Sahu, M., & Alam, O. (2017). Therapeutic journey of 2,4-thiazolidinediones as a versatile scaffold: An insight into structure activity relationship. European Journal of Medicinal Chemistry, 129, 218–250. https://doi.org/10.1016/j.ejmech.2017.02.031
  • Patil, V., Tilekar, K., Mehendale-Munj, S., Mohan, R., & Ramaa, C. S. (2010). Synthesis and primary cytotoxicity evaluation of new 5-benzylidene-2,4- thiazolidinedione derivatives. European Journal of Medicinal Chemistry, 45(10), 4539–4544. https://doi.org/10.1016/j.ejmech.2010.07.014
  • Pérez, M. J., & Quintanilla, R. A. (2015). Therapeutic Actions of the Thiazolidinediones in Alzheimer’s Disease. PPAR Research, 2015. https://doi.org/10.1155/2015/957248
  • Prati, F., Cavalli, A., & Bolognesi, M. L. (2016). Navigating the Chemical Space of Multitarget-Directed Ligands: From Hybrids to Fragments in Alzheimer’s Disease. Molecules, 21(4). https://doi.org/10.3390/molecules21040466
  • Qiu, C., & Fratiglioni, L. (2018). Aging without Dementia is Achievable: Current Evidence from Epidemiological Research. Journal of Alzheimer’s Disease, 62(3), 933–942. https://doi.org/10.3233/JAD-171037
  • Ramsay, R. R., Popovic-Nikolic, M. R., Nikolic, K., Uliassi, E., & Bolognesi, M. L. (2018). A perspective on multi-target drug discovery and design for complex diseases. Clinical and Translational Medicine, 7(1), 3. https://doi.org/10.1186/s40169-017-0181-2
  • Reddy, K. A., Lohray, B. B., Bhushan, V., Reddy, A. S., Kishore, P. H., Rao, V. V., … Rajagopalan, R. (1998). Novel euglycemic and hypolipidemic agent. Part 2: Antioxidant moiety as structural motif. Bioorganic and Medicinal Chemistry Letters, 8(9), 999–1002. https://doi.org/10.1016/S0960-894X(98)00159-0
  • Scott, L. J., & Goa, K. L. (2000). Galantamine: A review of its use in Alzheimer’s disease. Drugs, 60(5), 1095–1122. https://doi.org/10.2165/00003495-200060050-00008
  • Ulep, M. G., Saraon, S. K., & McLea, S. (2018). Alzheimer Disease. Journal for Nurse Practitioners, 14(3), 129–135. https://doi.org/10.1016/j.nurpra.2017.10.014
  • Yiannopoulou, K. G., & Papageorgiou, S. G. (2013). Current and future treatments for Alzheimer’s disease. Therapeutic Advances in Neurological Disorders, 6(1), 19–33. https://doi.org/10.1177/1756285612461679

Quantum Chemical Investigation of a Series of 5-substituted 2,4-thiazolidinedione Derivatives as Antineurodegenarative Agents

Year 2021, Volume: 14 Issue: 1, 93 - 116, 31.03.2021
https://doi.org/10.18185/erzifbed.856269

Abstract

A series of 5-substituted 2,4-thiazolidinedione derivatives which exhibit different pharmacological properties such as anti-hyperglycemic, anticancer, antioxidant and anti-neurodegenerative has been quantum chemically investigated to clarify elucidated electronic and geometrical features. B3LYP functional with three different basis sets including 6-31G, 6-31G(d) and 6-31G(d,p) was made use of to optimize the three-dimensional structures of the compounds. Mulliken charges, dipole moments, energies of the HOMO and LUMO were also calculated with the same methods. The calculated geometrical parameters were compared with the experimental data to analyze the results of the different basis set. According to the quantum chemical calculation results obtained, the theoretical bond lengths and angles show good compatibility with the experimental data. Based on the HOMO and LUMO energy gap analysis, compound 24 was found to be the most reactive one in the 5-substituted 2,4-thiazolidinedione derivatives under study.

References

  • Alzheimer’s Association (2019) Alzheimer’s Disase Facts and Figures. Alzhimers Dement, 15(3):321-87.
  • Bahare, R. S., Ganguly, S., Choowongkomon, K., & Seetaha, S. (2015). Synthesis, HIV-1 RT inhibitory, antibacterial, antifungal and binding mode studies of some novel N-substituted 5-benzylidine-2,4-thiazolidinediones. DARU, Journal of Pharmaceutical Sciences, 23(1). https://doi.org/10.1186/s40199-014-0086-1
  • Balsinha, C., Gonçalves-Pereira, M., Iliffe, S., Freitas, J. A., & Grave, J. (2019). World Alzheimer Report 2019. Alzheimer’s Disease International. https://doi.org/10.1007/978-3-030-10814-4_23
  • Becke, A. D. (1993). A new mixing of Hartree-Fock and local density-functional theories. The Journal of Chemical Physics, 98(2), 1372–1377. https://doi.org/10.1063/1.464304
  • Becke, A. D. (1993). Density-functional thermochemistry. III. The role of exact exchange. The Journal of Chemical Physics, 98(7), 5648–5652. https://doi.org/10.1063/1.464913
  • Cummings, J. L., Morstorf, T., & Zhong, K. (2014). Alzheimer’s disease drug-development pipeline: Few candidates, frequent failures. Alzheimer’s Research and Therapy, 6(4), 37. https://doi.org/10.1186/alzrt269
  • Day, C. (1999). Thiazolidinediones: A new class of antidiabetic drugs. Diabetic Medicine, 16(3), 179–192. https://doi.org/10.1046/j.1464-5491.1999.00023.x
  • Desai, A., & Grossberg, G. (2001). Review of rivastigmine and its clinical applications in Alzheimer’s disease and related disorders. Expert Opinion on Pharmacotherapy, 2(4), 653–666. https://doi.org/10.1517/14656566.2.4.653
  • Form, G. R., Raper, E. S., & Downie, T. C. (1975). The crystal and molecular structure of thiazolidine-2,4-dione. Acta Crystallographica Section B Structural Crystallography and Crystal Chemistry, 31(9), 2181–2184. https://doi.org/10.1107/s0567740875007212
  • Gandini, A., Bartolini, M., Tedesco, D., Martinez-Gonzalez, L., Roca, C., Campillo, N. E., … Bolognesi, M. L. (2018). Tau-Centric Multitarget Approach for Alzheimer’s Disease: Development of First-in-Class Dual Glycogen Synthase Kinase 3β and Tau-Aggregation Inhibitors. Journal of Medicinal Chemistry, 61(17), 7640–7656. https://doi.org/10.1021/acs.jmedchem.8b00610
  • González, J. F., Alcántara, A. R., Doadrio, A. L., & Sánchez-Montero, J. M. (2019). Developments with multi-target drugs for Alzheimer’s disease: an overview of the current discovery approaches. Expert Opinion on Drug Discovery, 14:9, 879–891. https://doi.org/10.1080/17460441.2019.1623201
  • Holmes, C., Wilkinson, D., Dean, C., Vethanayagam, S., Olivieri, S., Langley, A., … Damms, J. (2004). The efficacy of donepezil in the treatment of neuropsychiatric symptoms in Alzheimer disease. Neurology, 63(2), 214 LP – 219. https://doi.org/10.1212/01.WNL.0000129990.32253.7B
  • Hughes, R. E., Nikolic, K., & Ramsay, R. R. (2016). One for all? Hitting multiple Alzheimer’s disease targets with one drug. Frontiers in Neuroscience, 10(APR), 1–10. https://doi.org/10.3389/fnins.2016.00177
  • Hyde, C., Peters, J., Bond, M., Rogers, G., Hoyle, M., Anderson, R., … Moxham, T. (2013). Evolution of the evidence on the effectiveness and cost-effectiveness of acetylcholinesterase inhibitors and memantine for Alzheimer’s disease: Systematic review and economic model. Age and Ageing, 42(1), 14–20. https://doi.org/10.1093/ageing/afs165
  • Kumar, A., Tiwari, A., & Sharma, A. (2018). Changing Paradigm from one Target one Ligand Towards Multi-target Directed Ligand Design for Key Drug Targets of Alzheimer Disease: An Important Role of In Silico Methods in Multi-target Directed Ligands Design. Current Neuropharmacology, 16(6), 726–739. https://doi.org/10.2174/1570159x16666180315141643
  • Lao, K., Ji, N., Zhang, X., Qiao, W., Tang, Z., & Gou, X. (2019). Drug development for Alzheimer’s disease: review. Journal of Drug Targeting, 27(2), 164–173. https://doi.org/10.1080/1061186X.2018.1474361
  • Lee, C., Yang, W., & Parr, R. G. (1988). Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Physical Review B, 37(2), 785–789. https://doi.org/10.1103/PhysRevB.37.785
  • Liu, Y., Nguyen, M., Robert, A., & Meunier, B. (2019). Metal Ions in Alzheimer’s Disease: A Key Role or Not? Accounts of Chemical Research, 52(7), 2026–2035. https://doi.org/10.1021/acs.accounts.9b00248
  • Masters, C. L., Bateman, R., Blennow, K., Rowe, C. C., Sperling, R. A., & Cummings, J. L. (2015). Alzheimer’s disease. Nature Reviews Disease Primers, 1, 1–18. https://doi.org/10.1038/nrdp.2015.56
  • M. J. Frisch, G., Trucks, W., Schlegel, H. B. ., Scuseria, G. E. ., Robb, M. A. ., Cheeseman, J. R., … Fox, D. J. (2009). Gaussian 09, Revision E. 01; Gaussian. Gaussian, Inc.: Wallingford, CT. https://doi.org/111
  • Mulliken, R. S. (1955). Electronic population analysis on LCAO-MO molecular wave functions. I. The Journal of Chemical Physics, 23(10), 1833–1840. https://doi.org/10.1063/1.1740588
  • Mulliken, R. S. (1955). Electronic population analysis on LCAO-MO molecular wave functions. II. Overlap populations, bond orders, and covalent bond energies. The Journal of Chemical Physics, 23(10), 1841–1846. https://doi.org/10.1063/1.1740589
  • Mulliken, R. S. (1955). Electronic population analysis on LCAO-MO molecular wave functions. III. effects of hybridization on overlap and gross AO populations. The Journal of Chemical Physics, 23(12), 2338–2342. https://doi.org/10.1063/1.1741876
  • Naim, M. J., Alam, M. J., Ahmad, S., Nawaz, F., Shrivastava, N., Sahu, M., & Alam, O. (2017). Therapeutic journey of 2,4-thiazolidinediones as a versatile scaffold: An insight into structure activity relationship. European Journal of Medicinal Chemistry, 129, 218–250. https://doi.org/10.1016/j.ejmech.2017.02.031
  • Patil, V., Tilekar, K., Mehendale-Munj, S., Mohan, R., & Ramaa, C. S. (2010). Synthesis and primary cytotoxicity evaluation of new 5-benzylidene-2,4- thiazolidinedione derivatives. European Journal of Medicinal Chemistry, 45(10), 4539–4544. https://doi.org/10.1016/j.ejmech.2010.07.014
  • Pérez, M. J., & Quintanilla, R. A. (2015). Therapeutic Actions of the Thiazolidinediones in Alzheimer’s Disease. PPAR Research, 2015. https://doi.org/10.1155/2015/957248
  • Prati, F., Cavalli, A., & Bolognesi, M. L. (2016). Navigating the Chemical Space of Multitarget-Directed Ligands: From Hybrids to Fragments in Alzheimer’s Disease. Molecules, 21(4). https://doi.org/10.3390/molecules21040466
  • Qiu, C., & Fratiglioni, L. (2018). Aging without Dementia is Achievable: Current Evidence from Epidemiological Research. Journal of Alzheimer’s Disease, 62(3), 933–942. https://doi.org/10.3233/JAD-171037
  • Ramsay, R. R., Popovic-Nikolic, M. R., Nikolic, K., Uliassi, E., & Bolognesi, M. L. (2018). A perspective on multi-target drug discovery and design for complex diseases. Clinical and Translational Medicine, 7(1), 3. https://doi.org/10.1186/s40169-017-0181-2
  • Reddy, K. A., Lohray, B. B., Bhushan, V., Reddy, A. S., Kishore, P. H., Rao, V. V., … Rajagopalan, R. (1998). Novel euglycemic and hypolipidemic agent. Part 2: Antioxidant moiety as structural motif. Bioorganic and Medicinal Chemistry Letters, 8(9), 999–1002. https://doi.org/10.1016/S0960-894X(98)00159-0
  • Scott, L. J., & Goa, K. L. (2000). Galantamine: A review of its use in Alzheimer’s disease. Drugs, 60(5), 1095–1122. https://doi.org/10.2165/00003495-200060050-00008
  • Ulep, M. G., Saraon, S. K., & McLea, S. (2018). Alzheimer Disease. Journal for Nurse Practitioners, 14(3), 129–135. https://doi.org/10.1016/j.nurpra.2017.10.014
  • Yiannopoulou, K. G., & Papageorgiou, S. G. (2013). Current and future treatments for Alzheimer’s disease. Therapeutic Advances in Neurological Disorders, 6(1), 19–33. https://doi.org/10.1177/1756285612461679
There are 33 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Makaleler
Authors

Nazmiye Sabancı 0000-0002-0733-1692

Publication Date March 31, 2021
Published in Issue Year 2021 Volume: 14 Issue: 1

Cite

APA Sabancı, N. (2021). Quantum Chemical Investigation of a Series of 5-substituted 2,4-thiazolidinedione Derivatives as Antineurodegenarative Agents. Erzincan University Journal of Science and Technology, 14(1), 93-116. https://doi.org/10.18185/erzifbed.856269