Research Article
BibTex RIS Cite

Derinliğe Bağlı Kondrosit Yüzey Alanı İçin Cevap Yüzey Yöntemi

Year 2021, Volume: 14 Issue: 2, 714 - 723, 31.08.2021
https://doi.org/10.18185/erzifbed.827163

Abstract

Eklem kıkırdağı, düşük sürtünmeli beyaz bir bağ dokusudur. Eklem kıkırdağındaki tek hücre tipi kondrositlerdir. Kıkırdakta düzgün eklemlenmeye izin verirler. Yetersiz rejeneratif kapasiteye sahiptirler. Cevap yüzey yöntemi, polinomları kullanarak herhangi bir işlemin modellenmesi için çok yararlı bir yöntemdir. Bu çalışmada, sığır eklem kıkırdağından kondrosit yüzey alanı derinliğe bağlı olarak incelenmiştir. Osteokondral eksplantların görüntülenmesi için konfokal mikroskop kullanılmıştır. Sığır eklem kıkırdağının konfokal görüntüsünden kondrosit alanını tahmin etmede öngörücü regresyon modelini oluşturmak için cevap yüzey yöntemi kullanıldı. Cevap yüzey yöntemi, girdi değişkenleri ve yanıt arasındaki ilişkileri incelemek için kullanılmıştır. Kondrosit yüzey alanı yanıt iken, kondrosit çevresi ve derinliği girdi değerleri olarak seçilmiştir. Derinliğe bağlı ölçülen ve hesaplanan kondrosit yüzey alanı gösterilmiştir. Cevap yüzey modeli anlamlı (p =0.001) ve R2 = 0.81 olduğundan kondrosit yüzey alanının tahmini için yeterliydi. Cevap yüzey yöntemi kondrosit yüzey alanının tahmini için kullanılabilir. Görüntü işlemede istatistiksel deneysel tasarım tekniklerinin uygulanması, deneysel çalışmaları azaltabilir ve deney hayvanlarının hayatını kurtarabilir.

References

  • Akkiraju, H., Nohe, A. 2015. “Role of Chondrocytes in Cartilage Formation, Progression of Osteoarthritis and Cartilage Regeneration”, Journal of Developmental Biology, 3(4), 177–192.
  • Annadurai, G., Juang, R. S., Lee, D. J. 2002. “Factorial Design Analysis for Adsorption of Dye on Activated Carbon Beads Incorporated with Calcium Alginate”, Advances in Environmental Research, 6, 191–198.
  • Anupam, K., Dutta, S., Bhattacharjee, C., Datta, S. 2011. “Optimisation of adsorption efficiency for reactive red 198 removal from wastewater over TiO2 using response surface methodology”, The Canadian Journal of Chemical Engineering, 89, 1274-1280.
  • Bajic, A., Tarantino, R., Chiu, L. L. Y., Duever, T., Waldman, S. D. 2020. “Optimization of culture media to enhance the growth of tissue engineered cartilage”, Biotechnology Progress, e3017, 1-12.
  • Chauhan, B., Gupta, R. 2004. “Application of statistical experimental design for optimization of alkaline protease production from Bacillus sp. RGR-14”, Process Biochemistry, 39(12), 2115–2122.
  • Cicek, E., Arikanoglu, A. 2014. “Morphological Variations of Chondrocytes in Bovine Articular Cartilage Using Confocal Laser Scanning Microscopy”, Acta Physica Polonica A, 125(4), 898-901.
  • Cicek, E., Cojocaru, C., Zakrzewska-Trznadel, G., Harasimowicz, M., Miskiewicz, A. 2012. “Response surface methodology for the modeling of 85 Sr adsorption on zeolite 3A and pumice”, Environmental Technology, 33(1), 51–59.
  • Cicek, E., Cojocaru, C., Zakrzewska-Trznadel, G., Jaworska, A., Harasimowicz, M. 2008. “Response surface methodology for cobalt removal from aqua solutions using Isparta pumice and zeolite 4A adsorbents”, Nukleonika, 53(S2), 121-128.
  • Goodwin, W., McCabe, D., Sauter, E., Reese, E., Walter, M., Buckwalter, J. A., Martin, J. A. 2010. “Rotenone prevents impact-induced chondrocyte death”, Journal of Orthopaedic Research, 28(8), 1057-63.
  • Guo, H., Maher, S. A., Torzilli, P. A. 2014. “A biphasic multiscale study of the mechanical microenvironment of chondrocytes within articular cartilage under unconfined compression”, The Journal of Biomechanics, 47, 2721–2729.
  • Guo, H., Torzilli, P. A. 2016. “Shape of chondrocytes within articular cartilage affects the solid but not the fluid microenvironment under unconfined compression”, Acta Biomaterialia, 29, 170-179.
  • Hall, A. C. 2019. “The role of chondrocyte morphology and volume in controlling phenotype-implications for osteoarthritis, cartilage repair, and cartilage engineering”, Current Rheumatology Reports, 21(8), 38.
  • Halloran, J. P., Sibole, S., van Donkelaar, C. C., van Turnhout, M. C., Oomens, C. W., Weiss, J. A., Guilak, F., Erdemir, A. 2012. “Multiscale mechanics of articular cartilage: potentials and challenges of coupling musculoskeletal, joint, and microscale computational models”, Annals of Biomedical Engineering, 40(11), 2456-2474.
  • Khayet, M., Cojocaru, C., Zakrzewska-Trznadel, G. 2008. “Response surface modelling and optimization in pervaporation”, Journal of Membrane Science, 321, 272–283.
  • Le, M. H., Behera, S. K., Park, H. S. 2010. “Optimization of operational parameters for ethanol production from Korean food waste leachate”, International Journal of Environmental Science and Technology, 7, 157–164.
  • Martin, J. A., Martini, A., Molinari, A., Morgan, W., Ramalingam, W., Buckwalter, J. A., McKinley, T. O. 2012. “Mitochondrial electron transport and glycolysis are coupled in articular cartilage”, Osteoarthritis and Cartilage, 20(4), 323-329.
  • Moo, E. K., Amrein, M., Epstein, M., Duvall, M., Osman, N. A. A., Pingguan-Murphy, B., Herzog, W. 2013. “The Properties of Chondrocyte Membrane Reservoirs and Their Role in Impact-Induced Cell Death”, Biophysical Journal, 105(7), 1590–1600.
  • Phull, A. R., Eo, S. H., Abbas, Q., Ahmed, M., Kim, S. J. 2016. “Applications of Chondrocyte-Based Cartilage Engineering: An Overview”, BioMed Research International, 1879837, 17.
  • Ramakrishnan, P. S., Pedersen, D. R., Stroud, N. J., McCabe, D. J., Martin, J. A. 2011. “Repeated measurement of mechanical properties in viable osteochondral explants following a single blunt impact injury”, Proceedings of the Institution of Mechanical Engineers H, 225(10), 993-1002.
  • Ranade, S. S., Thiagarajan, P. 2017. “Selection of a design for response surface”, IOP Conf Ser: Materials Science and Engineering, 263(2), 022043.
  • Zhang, Q. Y., Bai, J. D., Wu, X. A., Liu, X. N., Zhang, M., Chen, W. Y. 2020. “Microniche geometry modulates the mechanical properties and calcium signaling of chondrocytes”, Journal of Biomechanics, 104, 109729.

The Response Surface Methodology for Depth-Dependent Chondrocyte Surface Area

Year 2021, Volume: 14 Issue: 2, 714 - 723, 31.08.2021
https://doi.org/10.18185/erzifbed.827163

Abstract

Articular cartilage is a low-friction white connective tissue. The only cell type in articular cartilage are chondrocytes. They permit smooth articulation in cartilage. They have insufficient regenerative capacity. Response surface methodology is a very useful tool for the modelling of any processes using polynomials. This study investigated the depth-dependent chondrocyte surface area from bovine articular cartilage. Confocal microscope was utilized to image osteochondral explants. The response surface methodology was used to constitute the predictive regression model to guess chondrocyte area from confocal image of bovine articular cartilage. This methodology was employed to examine the relationships among input variables and response. The response was surface area of chondrocyte while the inputs were perimeter of chondrocyte and depth. The depth-dependent measured and calculated chondrocyte surface area was demonstrated. The response surface model was significant (p=0.001) and adequate for the prediction the chondrocyte surface area since R2 = 0.81. The chondrocyte surface area can be predicted with perimeter and depth by response surface methodology. The implementation of statistical experimental design techniques in image processing can reduce experimental runs and save experimental animals live.

References

  • Akkiraju, H., Nohe, A. 2015. “Role of Chondrocytes in Cartilage Formation, Progression of Osteoarthritis and Cartilage Regeneration”, Journal of Developmental Biology, 3(4), 177–192.
  • Annadurai, G., Juang, R. S., Lee, D. J. 2002. “Factorial Design Analysis for Adsorption of Dye on Activated Carbon Beads Incorporated with Calcium Alginate”, Advances in Environmental Research, 6, 191–198.
  • Anupam, K., Dutta, S., Bhattacharjee, C., Datta, S. 2011. “Optimisation of adsorption efficiency for reactive red 198 removal from wastewater over TiO2 using response surface methodology”, The Canadian Journal of Chemical Engineering, 89, 1274-1280.
  • Bajic, A., Tarantino, R., Chiu, L. L. Y., Duever, T., Waldman, S. D. 2020. “Optimization of culture media to enhance the growth of tissue engineered cartilage”, Biotechnology Progress, e3017, 1-12.
  • Chauhan, B., Gupta, R. 2004. “Application of statistical experimental design for optimization of alkaline protease production from Bacillus sp. RGR-14”, Process Biochemistry, 39(12), 2115–2122.
  • Cicek, E., Arikanoglu, A. 2014. “Morphological Variations of Chondrocytes in Bovine Articular Cartilage Using Confocal Laser Scanning Microscopy”, Acta Physica Polonica A, 125(4), 898-901.
  • Cicek, E., Cojocaru, C., Zakrzewska-Trznadel, G., Harasimowicz, M., Miskiewicz, A. 2012. “Response surface methodology for the modeling of 85 Sr adsorption on zeolite 3A and pumice”, Environmental Technology, 33(1), 51–59.
  • Cicek, E., Cojocaru, C., Zakrzewska-Trznadel, G., Jaworska, A., Harasimowicz, M. 2008. “Response surface methodology for cobalt removal from aqua solutions using Isparta pumice and zeolite 4A adsorbents”, Nukleonika, 53(S2), 121-128.
  • Goodwin, W., McCabe, D., Sauter, E., Reese, E., Walter, M., Buckwalter, J. A., Martin, J. A. 2010. “Rotenone prevents impact-induced chondrocyte death”, Journal of Orthopaedic Research, 28(8), 1057-63.
  • Guo, H., Maher, S. A., Torzilli, P. A. 2014. “A biphasic multiscale study of the mechanical microenvironment of chondrocytes within articular cartilage under unconfined compression”, The Journal of Biomechanics, 47, 2721–2729.
  • Guo, H., Torzilli, P. A. 2016. “Shape of chondrocytes within articular cartilage affects the solid but not the fluid microenvironment under unconfined compression”, Acta Biomaterialia, 29, 170-179.
  • Hall, A. C. 2019. “The role of chondrocyte morphology and volume in controlling phenotype-implications for osteoarthritis, cartilage repair, and cartilage engineering”, Current Rheumatology Reports, 21(8), 38.
  • Halloran, J. P., Sibole, S., van Donkelaar, C. C., van Turnhout, M. C., Oomens, C. W., Weiss, J. A., Guilak, F., Erdemir, A. 2012. “Multiscale mechanics of articular cartilage: potentials and challenges of coupling musculoskeletal, joint, and microscale computational models”, Annals of Biomedical Engineering, 40(11), 2456-2474.
  • Khayet, M., Cojocaru, C., Zakrzewska-Trznadel, G. 2008. “Response surface modelling and optimization in pervaporation”, Journal of Membrane Science, 321, 272–283.
  • Le, M. H., Behera, S. K., Park, H. S. 2010. “Optimization of operational parameters for ethanol production from Korean food waste leachate”, International Journal of Environmental Science and Technology, 7, 157–164.
  • Martin, J. A., Martini, A., Molinari, A., Morgan, W., Ramalingam, W., Buckwalter, J. A., McKinley, T. O. 2012. “Mitochondrial electron transport and glycolysis are coupled in articular cartilage”, Osteoarthritis and Cartilage, 20(4), 323-329.
  • Moo, E. K., Amrein, M., Epstein, M., Duvall, M., Osman, N. A. A., Pingguan-Murphy, B., Herzog, W. 2013. “The Properties of Chondrocyte Membrane Reservoirs and Their Role in Impact-Induced Cell Death”, Biophysical Journal, 105(7), 1590–1600.
  • Phull, A. R., Eo, S. H., Abbas, Q., Ahmed, M., Kim, S. J. 2016. “Applications of Chondrocyte-Based Cartilage Engineering: An Overview”, BioMed Research International, 1879837, 17.
  • Ramakrishnan, P. S., Pedersen, D. R., Stroud, N. J., McCabe, D. J., Martin, J. A. 2011. “Repeated measurement of mechanical properties in viable osteochondral explants following a single blunt impact injury”, Proceedings of the Institution of Mechanical Engineers H, 225(10), 993-1002.
  • Ranade, S. S., Thiagarajan, P. 2017. “Selection of a design for response surface”, IOP Conf Ser: Materials Science and Engineering, 263(2), 022043.
  • Zhang, Q. Y., Bai, J. D., Wu, X. A., Liu, X. N., Zhang, M., Chen, W. Y. 2020. “Microniche geometry modulates the mechanical properties and calcium signaling of chondrocytes”, Journal of Biomechanics, 104, 109729.
There are 21 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Makaleler
Authors

Ekrem Çiçek 0000-0001-6724-9423

Publication Date August 31, 2021
Published in Issue Year 2021 Volume: 14 Issue: 2

Cite

APA Çiçek, E. (2021). The Response Surface Methodology for Depth-Dependent Chondrocyte Surface Area. Erzincan University Journal of Science and Technology, 14(2), 714-723. https://doi.org/10.18185/erzifbed.827163