Research Article
BibTex RIS Cite

Triple Band Wide Angle Polarization Insensitive Metamaterial Absorber

Year 2021, Volume: 14 Issue: 2, 789 - 801, 31.08.2021
https://doi.org/10.18185/erzifbed.870049

Abstract

In this study, a metamaterial based microwave absorber working at three microwave bandwidths was designed. The design works with 90% absorption in 3 different microwave bands, namely C band between 5.4-7.75 GHz, X band between 8.3 - 9.65 GHz and Ku band between 13.65 - 15 GHz respectively. The polarization of the wave incoming to the designed metamaterial absorber was changed, and the percent absorption was obtained exactly the same with the metamaterial geometry for TE and TM modes. In this respect, it is polarization insensitive absorber, and strong absorption results have been obtained at various oblique incidence (10o, 20o and 30o) for absorption performance. For the analysis of the microwave absorber, the electrical and magnetic permeabilities of the metamaterial were obtained in resonance. In addition, for impedance analysis, the normalized impedance of the metamaterial in the absorbing operating frequency range was obtained. In the frequency ranges where absorption is provided, the normalized impedance value of the absorber has been obtained approximately the same as the normalized impedance of the air. In addition, the surface currents of the metamaterial absorber were obtained for the frequencies 5.67 GHz, 7.37 GHz, 8.76 GHz and 14.43 GHz where strong resonance frequencies were realized. CST Microwave Studio is used as an electromagnetic simulation program.

References

  • Veselago, V. G. 1968. “Electrodynamics of substances with simultaneously negative electrical and magnetic permeabilities”, Soviet Physics Uspekhi, 10(4), 504-509.
  • Pendry, J.B., Holden, A.J., Robbins, D.J. and Stewart, W.J. 1998. “Low frequency plasmons in thin-wire structures”, Journal of Physics: Condensed Matter, 10 (22), 4785-4809.
  • Pendry, J.B., Holden, A.J., Robbins, D.J. and Stewart, W.J. 1999. “Magnetism from conductors and enhanced nonlinear phenomena”, IEEE Transactions Microwave Theory Techniques, 47, 2075-2080.
  • Smith, D.R., Padilla, W.J., Vier, D.C., Nemat-Nasser, S.C. and Schultz, S. 2000. “Composite medium with simultaneously negative permeability and permittivity”, Physical Review Letters, 84 (18), 4184.
  • Pendry JB., 2000. “Negative refraction makes a perfect lens”, Phys Rev Lett., 85, 3966
  • Schurig, D., Mock, J. J., Justice, B. J., Cummer, S. A., Pendry, J. B., Starr, A. F., and Smith, D. R. 2006. “Metamaterial electromagnetic cloak at microwave frequencies”, Science, 314(5801), 977-980.
  • Wang, Y., Sun, T., Paudel, T., Zhang, Y., Ren, Z., and Kempa, K. 2012. “Metamaterial-plasmonic absorber structure for high efficiency amorphous silicon solar cells”, Nano letters, 12(1), 440-445.
  • Ziolkowski, R. W., and Erentok, A. 2006. “Metamaterial-based efficient electrically small antennas”, IEEE Transactions on antennas and propagation, 54(7), 2113-2130.
  • Shalaev, V. M. 2007. “Optical negative-index metamaterials”, Nature photonics, 1(1), 41-48.
  • Watts, C. M., Liu, X., and Padilla, W. J. 2012. “Metamaterial electromagnetic wave absorbers”, Advanced materials, 24(23), OP98-OP120.
  • Landy, N. I., Sajuyigbe, S., Mock, J. J., Smith, D. R., and Padilla, W. J. 2008. “Perfect metamaterial absorber”, Physical review letters, 100(20), 207402.
  • Huang, L., and Chen, H. 2011. “Multi-band and polarization insensitive metamaterial absorber”, Progress In Electromagnetics Research, 113, 103-110.
  • Tao, H., Bingham, C. M., Strikwerda, A. C., Pilon, D., Shrekenhamer, D., Landy, N. I., Fan K., Zhang X., Padilla J. W., and Averitt, R. D. 2008. “Highly flexible wide angle of incidence terahertz metamaterial absorber: Design, fabrication, and characterization”, physical review B, 78(24), 241103.
  • Wang, B. X., Wang, G. Z., and Sang, T. 2016. “Simple design of novel triple-band terahertz metamaterial absorber for sensing application”, Journal of Physics D: Applied Physics, 49(16), 165307.
  • Wang, B. X., He, Y., Lou, P., Huang, W. Q., and Pi, F. 2020. “Penta-band terahertz light absorber using five localized resonance responses of three patterned resonators”, Results in Physics, 16, 102930.
  • Zhi Cheng, Y., Wang, Y., Nie, Y., Zhou Gong, R., Xiong, X. and Wang, X. 2012. “Design, fabrication and measurement of a broadband polarization-insensitive metamaterial absorber based on lumped elements”, Journal of Applied Physics, 111(4), 044902.
  • Liu, Y., Gu, S., Luo, C., and Zhao, X. 2012. “Ultra-thin broadband metamaterial absorber”, Applied Physics A, 108(1), 19-24.
  • Huang, R., Li, Z. W., Kong, L. B., Liu, L., and Matitsine, S. 2009. “Analysis and design of an ultra-thin metamaterial absorber”, Progress In Electromagnetics Research, 14, 407-429.
  • Liu, J., Ma, W. Z., Chen, W., Yu, G. X., Chen, Y. S., Deng, X. C., and Yang, C. F. 2020. “Numerical analysis of an ultra-wideband metamaterial absorber with high absorptivity from visible light to near-infrared” Optics Express, 28(16), 23748-23760.
  • Xiong, H., Hong, J. S., Luo, C. M., and Zhong, L. L. 2013. “An ultrathin and broadband metamaterial absorber using multi-layer structures”, Journal of Applied Physics, 114(6), 064109.
  • Luo, H., & Cheng, Y. Z. 2018. “Ultra-thin dual-band polarization-insensitive and wide-angle perfect metamaterial absorber based on a single circular sector resonator structure”, Journal of Electronic Materials, 47(1), 323-328.
  • Shen, X., Cui, T. J., Zhao, J., Ma, H. F., Jiang, W. X., and Li, H. 2011. “Polarization-independent wide-angle triple-band metamaterial absorber. Optics express”, 19(10), 9401-9407.
  • Agarwal, M., Behera, A. K., and Meshram, M. K. 2016. “Wide-angle quad-band polarisation-insensitive metamaterial absorber”, Electronics Letters, 52(5), 340-342.
  • Mao, Z., Liu, S., Bian, B., Wang, B., Ma, B., Chen, L., and Xu, J. 2014. “Multi-band polarization-insensitive metamaterial absorber based on Chinese ancient coin-shaped structures”, Journal of Applied Physics, 115(20), 204505.
  • Ozturk, G., Hasar, U. C., Bute, M., and Ertugrul, M. 2020. “Determination of Constitutive Parameters of Strong-Coupled Bianisotropic Metamaterials Using Oblique Incidence Scattering Parameters”, IEEE Transactions on Antennas and Propagation.
  • Sharma, S. K., Ghosh, S., Srivastava, K. V., and Shukla, A. 2017. “Ultra‐thin dual‐band polarization‐insensitive conformal metamaterial absorber”, Microwave and Optical Technology Letters, 59(2), 348-353.
  • Asgharian, R., Zakeri, B., and Karimi, O. 2018. “Modified hexagonal triple-band metamaterial absorber with wide-angle stability”, AEU-International Journal of Electronics and Communications, 87, 119-123.
  • Ni, B., Chen, X. S., Huang, L. J., Ding, J. Y., Li, G. H., and Lu, W. 2013. “A dual-band polarization insensitive metamaterial absorber with split ring resonator”, Optical and Quantum Electronics, 45(7), 747-753.
  • Huang, X., Yang, H., Yu, S., Wang, J., Li, M., and Ye, Q. 2013. “Triple-band polarization-insensitive wide-angle ultra-thin planar spiral metamaterial absorber”, Journal of Applied Physics, 113(21), 213516.
  • Agarwal, M., Behera, A. K., & Meshram, M. K. 2016. “Wide-angle quad-band polarisation-insensitive metamaterial absorber”, Electronics Letters, 52(5), 340-342.
  • Ji, S., Jiang, C., Zhao, J., Zhang, X., and He, Q. 2019. “Design of a polarization-insensitive triple-band metamaterial absorber”, Optics Communications, 432, 65-70.

Üçlü Bant Geniş Açılı Polarizasyon Hassasiyetsiz Metamalzeme Emici

Year 2021, Volume: 14 Issue: 2, 789 - 801, 31.08.2021
https://doi.org/10.18185/erzifbed.870049

Abstract

Bu çalışmada üç mikrodalga bant genişliğinde çalışan metamalzeme tabanlı mikrodalga emici tasarımı yapılmıştır. Gerçekleştirilen tasarım sırası ile 5.4-7.75 GHz aralığında C bandında, 8.3 - 9.65 GHz aralığında X bandında ve 13.65 – 15 GHz aralığında Ku bandında olmak üzere 3 farklı mikrodalga bant aralığında %90 emilim ile çalışmaktadır. Tasarlanan metamalzeme emiciye gelen dalga polarizasyonu değiştirilmiş, metamalzeme geometrisi ile TE ve TM modları için yüzde emilimleri birebir aynı elde edilmiştir. Bu yönüyle polarizasyon hassasiyetsiz emici olup, emilim performansı için çeşitli açılarda (10o, 20o ve 30o) güçlü emilim sonuçları elde edilmiştir. Mikrodalga emicinin analizi için rezonans bölgesinde metamalzemenin elektriksel ve manyetik geçirgenlikleri elde edilmiştir. Ayrıca empedans analizi için metamalzemenin emici çalışma frekans aralığında normalize empedansı elde edilmiştir. Emilimin sağlandığı frekans aralıklarında emicinin normalize empedans değeri yaklaşık olarak havanın normalize empedansı ile aynı olarak elde edilmiştir. Ayrıca güçlü rezonans frekanslarının gerçekleştiği 5.67 GHz, 7.37 GHz, 8.76 GHz ve 14.43 GHz frekansları için metamalzeme emicinin yüzey akımları elde edilmiştir. Güçlü rezonans frekanslarda maksimum yüzde emilim oranları referans alınan diğer çalışmalarla karşılaştırılmıştır. Metamalzeme emicinin davranışının anlaşılması için transmisyon hattı eşdeğer devresi verilmiştir. Elektromanyetik simülasyon programı olarak CST Microwave Studio kullanılmıştır.

References

  • Veselago, V. G. 1968. “Electrodynamics of substances with simultaneously negative electrical and magnetic permeabilities”, Soviet Physics Uspekhi, 10(4), 504-509.
  • Pendry, J.B., Holden, A.J., Robbins, D.J. and Stewart, W.J. 1998. “Low frequency plasmons in thin-wire structures”, Journal of Physics: Condensed Matter, 10 (22), 4785-4809.
  • Pendry, J.B., Holden, A.J., Robbins, D.J. and Stewart, W.J. 1999. “Magnetism from conductors and enhanced nonlinear phenomena”, IEEE Transactions Microwave Theory Techniques, 47, 2075-2080.
  • Smith, D.R., Padilla, W.J., Vier, D.C., Nemat-Nasser, S.C. and Schultz, S. 2000. “Composite medium with simultaneously negative permeability and permittivity”, Physical Review Letters, 84 (18), 4184.
  • Pendry JB., 2000. “Negative refraction makes a perfect lens”, Phys Rev Lett., 85, 3966
  • Schurig, D., Mock, J. J., Justice, B. J., Cummer, S. A., Pendry, J. B., Starr, A. F., and Smith, D. R. 2006. “Metamaterial electromagnetic cloak at microwave frequencies”, Science, 314(5801), 977-980.
  • Wang, Y., Sun, T., Paudel, T., Zhang, Y., Ren, Z., and Kempa, K. 2012. “Metamaterial-plasmonic absorber structure for high efficiency amorphous silicon solar cells”, Nano letters, 12(1), 440-445.
  • Ziolkowski, R. W., and Erentok, A. 2006. “Metamaterial-based efficient electrically small antennas”, IEEE Transactions on antennas and propagation, 54(7), 2113-2130.
  • Shalaev, V. M. 2007. “Optical negative-index metamaterials”, Nature photonics, 1(1), 41-48.
  • Watts, C. M., Liu, X., and Padilla, W. J. 2012. “Metamaterial electromagnetic wave absorbers”, Advanced materials, 24(23), OP98-OP120.
  • Landy, N. I., Sajuyigbe, S., Mock, J. J., Smith, D. R., and Padilla, W. J. 2008. “Perfect metamaterial absorber”, Physical review letters, 100(20), 207402.
  • Huang, L., and Chen, H. 2011. “Multi-band and polarization insensitive metamaterial absorber”, Progress In Electromagnetics Research, 113, 103-110.
  • Tao, H., Bingham, C. M., Strikwerda, A. C., Pilon, D., Shrekenhamer, D., Landy, N. I., Fan K., Zhang X., Padilla J. W., and Averitt, R. D. 2008. “Highly flexible wide angle of incidence terahertz metamaterial absorber: Design, fabrication, and characterization”, physical review B, 78(24), 241103.
  • Wang, B. X., Wang, G. Z., and Sang, T. 2016. “Simple design of novel triple-band terahertz metamaterial absorber for sensing application”, Journal of Physics D: Applied Physics, 49(16), 165307.
  • Wang, B. X., He, Y., Lou, P., Huang, W. Q., and Pi, F. 2020. “Penta-band terahertz light absorber using five localized resonance responses of three patterned resonators”, Results in Physics, 16, 102930.
  • Zhi Cheng, Y., Wang, Y., Nie, Y., Zhou Gong, R., Xiong, X. and Wang, X. 2012. “Design, fabrication and measurement of a broadband polarization-insensitive metamaterial absorber based on lumped elements”, Journal of Applied Physics, 111(4), 044902.
  • Liu, Y., Gu, S., Luo, C., and Zhao, X. 2012. “Ultra-thin broadband metamaterial absorber”, Applied Physics A, 108(1), 19-24.
  • Huang, R., Li, Z. W., Kong, L. B., Liu, L., and Matitsine, S. 2009. “Analysis and design of an ultra-thin metamaterial absorber”, Progress In Electromagnetics Research, 14, 407-429.
  • Liu, J., Ma, W. Z., Chen, W., Yu, G. X., Chen, Y. S., Deng, X. C., and Yang, C. F. 2020. “Numerical analysis of an ultra-wideband metamaterial absorber with high absorptivity from visible light to near-infrared” Optics Express, 28(16), 23748-23760.
  • Xiong, H., Hong, J. S., Luo, C. M., and Zhong, L. L. 2013. “An ultrathin and broadband metamaterial absorber using multi-layer structures”, Journal of Applied Physics, 114(6), 064109.
  • Luo, H., & Cheng, Y. Z. 2018. “Ultra-thin dual-band polarization-insensitive and wide-angle perfect metamaterial absorber based on a single circular sector resonator structure”, Journal of Electronic Materials, 47(1), 323-328.
  • Shen, X., Cui, T. J., Zhao, J., Ma, H. F., Jiang, W. X., and Li, H. 2011. “Polarization-independent wide-angle triple-band metamaterial absorber. Optics express”, 19(10), 9401-9407.
  • Agarwal, M., Behera, A. K., and Meshram, M. K. 2016. “Wide-angle quad-band polarisation-insensitive metamaterial absorber”, Electronics Letters, 52(5), 340-342.
  • Mao, Z., Liu, S., Bian, B., Wang, B., Ma, B., Chen, L., and Xu, J. 2014. “Multi-band polarization-insensitive metamaterial absorber based on Chinese ancient coin-shaped structures”, Journal of Applied Physics, 115(20), 204505.
  • Ozturk, G., Hasar, U. C., Bute, M., and Ertugrul, M. 2020. “Determination of Constitutive Parameters of Strong-Coupled Bianisotropic Metamaterials Using Oblique Incidence Scattering Parameters”, IEEE Transactions on Antennas and Propagation.
  • Sharma, S. K., Ghosh, S., Srivastava, K. V., and Shukla, A. 2017. “Ultra‐thin dual‐band polarization‐insensitive conformal metamaterial absorber”, Microwave and Optical Technology Letters, 59(2), 348-353.
  • Asgharian, R., Zakeri, B., and Karimi, O. 2018. “Modified hexagonal triple-band metamaterial absorber with wide-angle stability”, AEU-International Journal of Electronics and Communications, 87, 119-123.
  • Ni, B., Chen, X. S., Huang, L. J., Ding, J. Y., Li, G. H., and Lu, W. 2013. “A dual-band polarization insensitive metamaterial absorber with split ring resonator”, Optical and Quantum Electronics, 45(7), 747-753.
  • Huang, X., Yang, H., Yu, S., Wang, J., Li, M., and Ye, Q. 2013. “Triple-band polarization-insensitive wide-angle ultra-thin planar spiral metamaterial absorber”, Journal of Applied Physics, 113(21), 213516.
  • Agarwal, M., Behera, A. K., & Meshram, M. K. 2016. “Wide-angle quad-band polarisation-insensitive metamaterial absorber”, Electronics Letters, 52(5), 340-342.
  • Ji, S., Jiang, C., Zhao, J., Zhang, X., and He, Q. 2019. “Design of a polarization-insensitive triple-band metamaterial absorber”, Optics Communications, 432, 65-70.
There are 31 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Makaleler
Authors

Gökhan Öztürk 0000-0001-8106-0053

Publication Date August 31, 2021
Published in Issue Year 2021 Volume: 14 Issue: 2

Cite

APA Öztürk, G. (2021). Triple Band Wide Angle Polarization Insensitive Metamaterial Absorber. Erzincan University Journal of Science and Technology, 14(2), 789-801. https://doi.org/10.18185/erzifbed.870049