Research Article
BibTex RIS Cite

Modeling the Effect of Pour Height, Casting Temperature and Die Preheating Temperature on the Fluidity of Different Section Thicknesses in Permanent Mold Casting of Al12Si Alloys

Year 2022, Volume: 15 Issue: Special Issue I - 4th International Conference on Advanced Engineering Technologies, 14 - 27, 23.12.2022
https://doi.org/10.18185/erzifbed.1199648

Abstract

The first and most important step of the casting method is that the liquid metal completely fills the mold cavity. One of the common mistakes in the casting process is that the liquid metal does not fully fill the mold cavity. For this reason, there is a need to improve the fluidity properties of aluminum alloys, the usage area of which is expanding thanks to its many advantageous properties. The aim of this study is to examine the parameters affecting the fluidity in the casting of Al12Si alloy by modeling techniques. The effects of varying pouring height, casting temperature and mold preheating temperature on fluidity in different section thicknesses were investigated in permanent mold casting. A specially designed mold with 2 mm, 4 mm, 6 mm and 8 mm section thickness was used in the study. Modeling studies were carried out with the FlowCast filling module, which is integrated into the SolidCast Casting simulation program. When the results are examined; It has been determined that all parameters play an active role on fluidity and different filling levels in different section thicknesses.

References

  • [1] Campbell, J. (2004). Castings Practice The 10 Rules of Castings. (9-113). Butterworth Heinemann, Oxford, United Kingdom.
  • [2] Shepel, S.V., Paolucci, S. (2002). “Numerical simulation of filling and solidification of permanent mold castings”. Applied Thermal Engineering. 22 (2) 229–248.
  • [3] Çolak M., Kayikci R., Dişpinar D. (2014). "Fluidity Characteristics of A356 Alloy with Various Thickness Sectioned New Test Mould", 143rd TMS Annual Meeting, 5th Shape Casting, San Diego, USA, 105-11.
  • [4] Ravi, K.R., Pillai, R.M., K.R., Amaranathan, Pai, B.C., Chakraborty, M. (2008). “Fluidity of aluminum alloys and composites: A review”. Journal of Alloys and Compounds, 456 (1–2) 201-210.
  • [5] Mollard, F.R., Flemings, M. C., Niyama, E.F. (1987). “Aluminum fluidity in casting”. JOM, 39(11), 34-34.
  • [6] Dahle, A.K., Tøndel, P.A., Paradies, C.J., Arnberg, L. (1996). “Effect of grain refinement on the fluidity of two commercial Al-Si foundry alloys”. Metallurgical and Materials Transactions A, 27 (8) 2305-2313.
  • [7] Di Sabatino, M., Arnberg, L. (2005). “Effect of grain refinement and dissolved hydrogen on the fluidity of A356 alloy”. International Journal of Cast Metals Research, 18 (3), 181-186.
  • [8] Borowiecki, B. (2008). “Conventional flow curves of liquid cast iron put on spheroidization”. Archives of Foundry Engineering, 8, 23-26.
  • [9] Vignesh, R., Gandhi, M. S., Vignesh, A., Rajarajan, P. (2016). “Effect of Squeeze Cast Process Parameters on Fluidity of Aluminium LM6 Alloy”. International Journal of Advancements in Technology, 7, 157.
  • [10] LianJiang Metals Company. (2019, 12 Temmuz). Re: Fluidity of Cast Iron and Its Test Methods [Online forum comment]. Retrieved from https://kitairu.net/minerals-and-metallurgy/metals-and-metal-products/metal-products/cast-and-forged/796727.html
  • [11] Sabatino, M.D., Arnberg, L. (2013). “A Review on The Fluidity of Al Based Alloys”. Metallurgical Science and Technology, 22 (1) 9-15.
  • [12] Brooks C.R. (1984). Heat treatment, structure, and properties of nonferrous alloys. American Society for Metals, Metals Park, Ohio, USA, 121p.
  • [13] Din, T., Campbell, J. (1996). “High strength aerospace aluminium casting alloys: A comparative study”. Materials Science and Technology, 12, 644-650.
  • [14] Mondolfo, L.F. (1976). Aluminum alloys: Structure and properties. Butterworth, London.
  • [15] Tiryakioglu, M., Campbell, J. (2009). “Ductility, structural quality, and fracture toughness of Al–Cu–Mg–Ag (A201) alloy castings”. Materials Science and Technology, 25 (6) 784-789.
  • [16] Din, T., Rashid A.K.M.B., Campbell, J., (1996) “High strength aerospace casting alloys: quality factor assessment”. Materials Science and Technology, 12 (3) 269-273.
  • [17] Çolak M., Kayikci R., Dişpinar D. (2015). "Influence of Different Cross Sections on Fluidity Characteristics of A356". Transactions of the Indian Institute of Metals, 68, 275-281.
  • [18] Lumley, R.N., (2011). Fundamentals of Aluminium Metallurgy. (1-19). Woodhead Publishing, Cornwall.
  • [19] R.A. Higgins, Part I: Applied Physical Metallurgy, Engineering Metallurgy (5th ed.). Hodder & Stoughton. (2017), pp. 435–438.ISBN 0-34028524-9.
  • [20] Wang, E.R., Hui, X.D., Wang, S.S., Zhao, Y.F., Chen, G.L. (2010). “Improved mechanical properties in cast Al-Si alloys by combined alloying of Fe and Cu”. Materials Science and Engineering A, 527, 7878-7884.
  • [21] Pathak, N., Kumar, A., Yadav, A., Dutta, P. (2009). “Effects of mould filling on evolution of the solid–liquid interface during solidification”. Applied Thermal Engineering, 29 (17–18) 3669–3678.
  • [22] Aslandoğan, R., (2009). Dökümde Akıcılık ve Akıcılığı Etkileyen Faktörlerin Araştırılması, Yüksek Lisans Tezi, Yıldız Teknik Üniversitesi, Fen Bilimleri Enstitüsü, İstanbul.
  • [23] Kharkiv, (2013). Physical and Chemical Bases Technological Processes. Retrieved from https://cidecs.net/wp-content/uploads/2019/01/Lecture-instructions-in-Technology-of-Enginearing-in-III-Parts.pdf
  • [24] Ludwig, T., Dişpinar D., Di Sabatino, M., Arnberg, L. (2012). "Influence of Oxide Additions on the Porosity Development and Mechanical Properties of A356 Aluminum Alloy Castings". International Journal of Metal Casting, 6, 41-50.
  • [25] Dispinar, D., Campbell, J., (2011). "Porosity, Hydrogen and Bifilm Content in Al Alloy Castings", Materials Science and Engineering A, 528 (10-11), 3860-3865.
  • [26] Dispinar, D., Akhtar, S., Nordmark, A., Di Sabatino, M., Arnberg, L. J. M. S. (2010). “Degassing, hydrogen and porosity phenomena in A356”. Materials Science and Engineering: A, 527(16-17), 3719-3725.
  • [27] Timelli, G., Caliari, D. (2017). “Effect of superheat and oxide inclusions on the fluidity of A356 alloy”. In Materials Science Forum (Vol. 884, pp. 71-80). Trans Tech Publications Ltd.
  • [28] Sánchez, S., Velasco, E., del C Zambrano, P., & Cavazos, J. L. (2006).” Effect of titanium and strontium addition on the fluidity of A319 and A356 aluminum alloys”. In Materials Science Forum (Vol. 509, pp. 159-164). Trans Tech Publications Ltd.
  • [29] Akkaya, B., Ertürk, E., Dispinar, D. (2014). Correlation between Melt Quality and Fluidity of A356, In Shape Casting: 5th International Symposium, (99-104). Springer International Publishing
  • [30] Di Sabatino, M., Arnberg, L., Rørvik, S., Prestmo, A., (2005). “The influence of oxide inclusions on the fluidity of Al–7wt.% Si alloy”, Materials Science and Engineering A, 413, 272-276.
  • [31] Han, Q., Xu, H. (2005). “Fluidity of Alloys Under High Pressure Die Casting Conditions”. Scripta Materialia. 53 (1) 7-10.
  • [32] Sin, S. L., Dubé, D. (2004). “Influence of process parameters on fluidity of investment-cast AZ91D magnesium alloy”. Materials Science and Engineering A, 386 (1-2) 34-42.
  • [33] Hua, Q., Gao, D., Zhang, H., Zhang, Y., Zhai, Q. (2007). “Influence of alloy elements and pouring temperature on the fluidity of cast magnesium alloy”. Materials Science and Engineering A, 444 (1-2) 69-74.
  • [34] Yang, L., Li, W., Du, J., Wang, K., Tang, P. (2016). “Effect of Si and Ni contents on the fluidity of Al-Ni-Si alloys evaluated by using thermal analysis”. Thermochimica Acta, 645 (7) 7-15.
  • [35] Tahir, Ş.A., Çolak, M., Kaymaz, Irfan., Dispinar, D. (2020). “Investigating the optimum model parameters for casting process of A356 alloy: A cross-validation using response surface method and particle swarm optimization”. Arabian Journal for Science and Engineering, 45 (11) 9759–68.
  • [36] Çolak, M., Arslan, İ. (2018). “Kokil kalıp dökümde alüminyum alaşımların beslenmesi üzerinde kalıp ön isıtma sıcaklığının etkisinin araştırılması”. Karadeniz Fen Bilimleri Dergisi, 8 (2) 131–40.
  • [37] Çolak, M., (2020) “OPTICast yazılımı ile döküm endüstrisinde kalıplama tasarımı optimizasyonu uygulaması”. Gümüşhane Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 10 (3), 545–551.
  • [38] V Kondic (1950). “Liquid Metal Properties- Effect on the casting fluidity of alloys”. Foundry Trade Journal, 88, 691.
  • [39] Ragone, D. V., Adams, C. M., Taylor, H. F. (1956). “A new method for determining the effect of solidification range on fluidity”. Trans AFS, 64, 653-657.
  • [40] Kwon, Y. D., Lee, Z. H. (2003). “The effect of grain refining and oxide inclusion on the fluidity of Al–4.5Cu–0.6Mn and A356 alloys”. Materials Science and Engineering A, 360 (1-2) 372-376.
  • [41] Qudong, W., Yizhen, L., Xiaoqin, Z., Wenjiang, Di., Yanping, Z., Qinghua, L., Jie, L., (1999). “Study on the fluidity of AZ91+xRE magnesium alloy”. Materials Science and Engineering A. 271 (1-2) 109-115.
  • [42] Di Sabatino, M., Arnberg, L., Brusethaug, S., Apelian, D. (2006). “Fluidity evaluation methods for Al–Mg–Si alloys”. International Journal of Cast Metals Research, 19 (2) 94-97.
Year 2022, Volume: 15 Issue: Special Issue I - 4th International Conference on Advanced Engineering Technologies, 14 - 27, 23.12.2022
https://doi.org/10.18185/erzifbed.1199648

Abstract

References

  • [1] Campbell, J. (2004). Castings Practice The 10 Rules of Castings. (9-113). Butterworth Heinemann, Oxford, United Kingdom.
  • [2] Shepel, S.V., Paolucci, S. (2002). “Numerical simulation of filling and solidification of permanent mold castings”. Applied Thermal Engineering. 22 (2) 229–248.
  • [3] Çolak M., Kayikci R., Dişpinar D. (2014). "Fluidity Characteristics of A356 Alloy with Various Thickness Sectioned New Test Mould", 143rd TMS Annual Meeting, 5th Shape Casting, San Diego, USA, 105-11.
  • [4] Ravi, K.R., Pillai, R.M., K.R., Amaranathan, Pai, B.C., Chakraborty, M. (2008). “Fluidity of aluminum alloys and composites: A review”. Journal of Alloys and Compounds, 456 (1–2) 201-210.
  • [5] Mollard, F.R., Flemings, M. C., Niyama, E.F. (1987). “Aluminum fluidity in casting”. JOM, 39(11), 34-34.
  • [6] Dahle, A.K., Tøndel, P.A., Paradies, C.J., Arnberg, L. (1996). “Effect of grain refinement on the fluidity of two commercial Al-Si foundry alloys”. Metallurgical and Materials Transactions A, 27 (8) 2305-2313.
  • [7] Di Sabatino, M., Arnberg, L. (2005). “Effect of grain refinement and dissolved hydrogen on the fluidity of A356 alloy”. International Journal of Cast Metals Research, 18 (3), 181-186.
  • [8] Borowiecki, B. (2008). “Conventional flow curves of liquid cast iron put on spheroidization”. Archives of Foundry Engineering, 8, 23-26.
  • [9] Vignesh, R., Gandhi, M. S., Vignesh, A., Rajarajan, P. (2016). “Effect of Squeeze Cast Process Parameters on Fluidity of Aluminium LM6 Alloy”. International Journal of Advancements in Technology, 7, 157.
  • [10] LianJiang Metals Company. (2019, 12 Temmuz). Re: Fluidity of Cast Iron and Its Test Methods [Online forum comment]. Retrieved from https://kitairu.net/minerals-and-metallurgy/metals-and-metal-products/metal-products/cast-and-forged/796727.html
  • [11] Sabatino, M.D., Arnberg, L. (2013). “A Review on The Fluidity of Al Based Alloys”. Metallurgical Science and Technology, 22 (1) 9-15.
  • [12] Brooks C.R. (1984). Heat treatment, structure, and properties of nonferrous alloys. American Society for Metals, Metals Park, Ohio, USA, 121p.
  • [13] Din, T., Campbell, J. (1996). “High strength aerospace aluminium casting alloys: A comparative study”. Materials Science and Technology, 12, 644-650.
  • [14] Mondolfo, L.F. (1976). Aluminum alloys: Structure and properties. Butterworth, London.
  • [15] Tiryakioglu, M., Campbell, J. (2009). “Ductility, structural quality, and fracture toughness of Al–Cu–Mg–Ag (A201) alloy castings”. Materials Science and Technology, 25 (6) 784-789.
  • [16] Din, T., Rashid A.K.M.B., Campbell, J., (1996) “High strength aerospace casting alloys: quality factor assessment”. Materials Science and Technology, 12 (3) 269-273.
  • [17] Çolak M., Kayikci R., Dişpinar D. (2015). "Influence of Different Cross Sections on Fluidity Characteristics of A356". Transactions of the Indian Institute of Metals, 68, 275-281.
  • [18] Lumley, R.N., (2011). Fundamentals of Aluminium Metallurgy. (1-19). Woodhead Publishing, Cornwall.
  • [19] R.A. Higgins, Part I: Applied Physical Metallurgy, Engineering Metallurgy (5th ed.). Hodder & Stoughton. (2017), pp. 435–438.ISBN 0-34028524-9.
  • [20] Wang, E.R., Hui, X.D., Wang, S.S., Zhao, Y.F., Chen, G.L. (2010). “Improved mechanical properties in cast Al-Si alloys by combined alloying of Fe and Cu”. Materials Science and Engineering A, 527, 7878-7884.
  • [21] Pathak, N., Kumar, A., Yadav, A., Dutta, P. (2009). “Effects of mould filling on evolution of the solid–liquid interface during solidification”. Applied Thermal Engineering, 29 (17–18) 3669–3678.
  • [22] Aslandoğan, R., (2009). Dökümde Akıcılık ve Akıcılığı Etkileyen Faktörlerin Araştırılması, Yüksek Lisans Tezi, Yıldız Teknik Üniversitesi, Fen Bilimleri Enstitüsü, İstanbul.
  • [23] Kharkiv, (2013). Physical and Chemical Bases Technological Processes. Retrieved from https://cidecs.net/wp-content/uploads/2019/01/Lecture-instructions-in-Technology-of-Enginearing-in-III-Parts.pdf
  • [24] Ludwig, T., Dişpinar D., Di Sabatino, M., Arnberg, L. (2012). "Influence of Oxide Additions on the Porosity Development and Mechanical Properties of A356 Aluminum Alloy Castings". International Journal of Metal Casting, 6, 41-50.
  • [25] Dispinar, D., Campbell, J., (2011). "Porosity, Hydrogen and Bifilm Content in Al Alloy Castings", Materials Science and Engineering A, 528 (10-11), 3860-3865.
  • [26] Dispinar, D., Akhtar, S., Nordmark, A., Di Sabatino, M., Arnberg, L. J. M. S. (2010). “Degassing, hydrogen and porosity phenomena in A356”. Materials Science and Engineering: A, 527(16-17), 3719-3725.
  • [27] Timelli, G., Caliari, D. (2017). “Effect of superheat and oxide inclusions on the fluidity of A356 alloy”. In Materials Science Forum (Vol. 884, pp. 71-80). Trans Tech Publications Ltd.
  • [28] Sánchez, S., Velasco, E., del C Zambrano, P., & Cavazos, J. L. (2006).” Effect of titanium and strontium addition on the fluidity of A319 and A356 aluminum alloys”. In Materials Science Forum (Vol. 509, pp. 159-164). Trans Tech Publications Ltd.
  • [29] Akkaya, B., Ertürk, E., Dispinar, D. (2014). Correlation between Melt Quality and Fluidity of A356, In Shape Casting: 5th International Symposium, (99-104). Springer International Publishing
  • [30] Di Sabatino, M., Arnberg, L., Rørvik, S., Prestmo, A., (2005). “The influence of oxide inclusions on the fluidity of Al–7wt.% Si alloy”, Materials Science and Engineering A, 413, 272-276.
  • [31] Han, Q., Xu, H. (2005). “Fluidity of Alloys Under High Pressure Die Casting Conditions”. Scripta Materialia. 53 (1) 7-10.
  • [32] Sin, S. L., Dubé, D. (2004). “Influence of process parameters on fluidity of investment-cast AZ91D magnesium alloy”. Materials Science and Engineering A, 386 (1-2) 34-42.
  • [33] Hua, Q., Gao, D., Zhang, H., Zhang, Y., Zhai, Q. (2007). “Influence of alloy elements and pouring temperature on the fluidity of cast magnesium alloy”. Materials Science and Engineering A, 444 (1-2) 69-74.
  • [34] Yang, L., Li, W., Du, J., Wang, K., Tang, P. (2016). “Effect of Si and Ni contents on the fluidity of Al-Ni-Si alloys evaluated by using thermal analysis”. Thermochimica Acta, 645 (7) 7-15.
  • [35] Tahir, Ş.A., Çolak, M., Kaymaz, Irfan., Dispinar, D. (2020). “Investigating the optimum model parameters for casting process of A356 alloy: A cross-validation using response surface method and particle swarm optimization”. Arabian Journal for Science and Engineering, 45 (11) 9759–68.
  • [36] Çolak, M., Arslan, İ. (2018). “Kokil kalıp dökümde alüminyum alaşımların beslenmesi üzerinde kalıp ön isıtma sıcaklığının etkisinin araştırılması”. Karadeniz Fen Bilimleri Dergisi, 8 (2) 131–40.
  • [37] Çolak, M., (2020) “OPTICast yazılımı ile döküm endüstrisinde kalıplama tasarımı optimizasyonu uygulaması”. Gümüşhane Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 10 (3), 545–551.
  • [38] V Kondic (1950). “Liquid Metal Properties- Effect on the casting fluidity of alloys”. Foundry Trade Journal, 88, 691.
  • [39] Ragone, D. V., Adams, C. M., Taylor, H. F. (1956). “A new method for determining the effect of solidification range on fluidity”. Trans AFS, 64, 653-657.
  • [40] Kwon, Y. D., Lee, Z. H. (2003). “The effect of grain refining and oxide inclusion on the fluidity of Al–4.5Cu–0.6Mn and A356 alloys”. Materials Science and Engineering A, 360 (1-2) 372-376.
  • [41] Qudong, W., Yizhen, L., Xiaoqin, Z., Wenjiang, Di., Yanping, Z., Qinghua, L., Jie, L., (1999). “Study on the fluidity of AZ91+xRE magnesium alloy”. Materials Science and Engineering A. 271 (1-2) 109-115.
  • [42] Di Sabatino, M., Arnberg, L., Brusethaug, S., Apelian, D. (2006). “Fluidity evaluation methods for Al–Mg–Si alloys”. International Journal of Cast Metals Research, 19 (2) 94-97.
There are 42 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Makaleler
Authors

Yunus Emre Asan 0000-0001-7176-6765

Murat Çolak 0000-0002-8255-5987

Early Pub Date December 21, 2022
Publication Date December 23, 2022
Published in Issue Year 2022 Volume: 15 Issue: Special Issue I - 4th International Conference on Advanced Engineering Technologies

Cite

APA Asan, Y. E., & Çolak, M. (2022). Modeling the Effect of Pour Height, Casting Temperature and Die Preheating Temperature on the Fluidity of Different Section Thicknesses in Permanent Mold Casting of Al12Si Alloys. Erzincan University Journal of Science and Technology, 15(Special Issue I), 14-27. https://doi.org/10.18185/erzifbed.1199648