Research Article
BibTex RIS Cite
Year 2022, Volume: 15 Issue: 3, 684 - 698, 30.12.2022
https://doi.org/10.18185/erzifbed.1180213

Abstract

References

  • [1] Harja, M., Buema, G., & Bucur, D. (2022) Recent advances in removal of Congo Red dye by adsorption using an industrial waste. Scientific Reports., 12(1), 1–18
  • [2] Zhang, H., Chen, H., Azat, S., Mansurov, Z. A., Liu, X., Wang, J., Su, X., et al. (2018) Super adsorption capability of rhombic dodecahedral Ca-Al layered double oxides for Congo red removal. Journal of Alloys and Compounds., 768, 572–581
  • [3] Cheng, Y., Yan, F., Huang, F., Chu, W., Pan, D., Chen, Z., Zheng, J., et al. (2010) Bioremediation of Cr (VI) and immobilization as Cr (III) by Ochrobactrum anthropi. Environmental science & technology., 44(16), 6357–6363
  • [4] You, J., Liu, C., Feng, X., Lu, B., Xia, L., & Zhuang, X. (2022) In situ synthesis of ZnS nanoparticles onto cellulose/chitosan sponge for adsorption–photocatalytic removal of Congo red. Carbohydrate Polymers., 288, 119332
  • [5] Eltaweil, A. S., Elshishini, H. M., Ghatass, Z. F., & Elsubruiti, G. M. (2021) Ultra-high adsorption capacity and selective removal of Congo red over aminated graphene oxide modified Mn-doped UiO-66 MOF. Powder technology., 379, 407–416
  • [6] Mandal, S., Calderon, J., Marpu, S. B., Omary, M. A., & Shi, S. Q. (2021) Mesoporous activated carbon as a green adsorbent for the removal of heavy metals and Congo red: Characterization, adsorption kinetics, and isotherm studies. Journal of Contaminant Hydrology., 243, 103869
  • [7] Parvin, S., Biswas, B. K., Rahman, M. A., Rahman, M. H., Anik, M. S., & Uddin, M. R. (2019) Study on adsorption of Congo red onto chemically modified egg shell membrane. Chemosphere., 236, 124326
  • [8] Lee, J.-W., Choi, S.-P., Thiruvenkatachari, R., Shim, W.-G., & Moon, H. (2006) Submerged microfiltration membrane coupled with alum coagulation/powdered activated carbon adsorption for complete decolorization of reactive dyes. Water research., 40(3), 435–444
  • [9] Gu, J., Liu, H., Wang, S., Zhang, M., & Liu, Y. (2019) An innovative anaerobic MBR-reverse osmosis-ion exchange process for energy-efficient reclamation of municipal wastewater to NEWater-like product water. Journal of Cleaner Production., 230, 1287–1293
  • [10] Qi, L., Yu, J., & Jaroniec, M. (2013) Enhanced and suppressed effects of ionic liquid on the photocatalytic activity of TiO2. Adsorption., 19(2), 557–561
  • [11] Atab, M. S., Smallbone, A. J., & Roskilly, A. P. (2018) A hybrid reverse osmosis/adsorption desalination plant for irrigation and drinking water. Desalination., 444, 44–52
  • [12] Naddeo, V., Secondes, M. F. N., Borea, L., Hasan, S. W., Ballesteros Jr, F., & Belgiorno, V. (2020) Removal of contaminants of emerging concern from real wastewater by an innovative hybrid membrane process–UltraSound, Adsorption, and Membrane ultrafiltration (USAMe®). Ultrasonics Sonochemistry., 68, 105237
  • [13] Michael-Kordatou, I., Karaolia, P., & Fatta-Kassinos, D. (2018) The role of operating parameters and oxidative damage mechanisms of advanced chemical oxidation processes in the combat against antibiotic-resistant bacteria and resistance genes present in urban wastewater. Water research., 129, 208–230
  • [14] Nancharaiah, Y. V, & Sarvajith, M. (2019) Aerobic granular sludge process: a fast growing biological treatment for sustainable wastewater treatment. Current Opinion in Environmental Science & Health., 12, 57–65
  • [15] Rashid, R., Shafiq, I., Akhter, P., Iqbal, M. J., & Hussain, M. (2021) A state-of-the-art review on wastewater treatment techniques: the effectiveness of adsorption method. Environmental Science and Pollution Research., 28(8), 9050–9066
  • [16] Velusamy, S., Roy, A., Sundaram, S., & Kumar Mallick, T. (2021) A review on heavy metal ions and containing dyes removal through graphene oxide‐based adsorption strategies for textile wastewater treatment. The Chemical Record., 21(7), 1570–1610
  • [17] Saheed, I. O., Oh, W. Da, & Suah, F. B. M. (2021) Chitosan modifications for adsorption of pollutants–A review. Journal of hazardous materials., 408, 124889
  • [18] Qamar, S. A., Ashiq, M., Jahangeer, M., Riasat, A., & Bilal, M. (2020) Chitosan-based hybrid materials as adsorbents for textile dyes–A review. Case Studies in Chemical and Environmental Engineering., 2, 100021
  • [19] Yu, S., Wang, X., Pang, H., Zhang, R., Song, W., Fu, D., Hayat, T., et al. (2018) Boron nitride-based materials for the removal of pollutants from aqueous solutions: a review. Chemical Engineering Journal., 333, 343–360
  • [20] Li, J., Xiao, X., Xu, X., Lin, J., Huang, Y., Xue, Y., Jin, P., et al. (2013) Activated boron nitride as an effective adsorbent for metal ions and organic pollutants. Scientific reports., 3(1), 1–7
  • [21] Ouyang, J., Zhao, Z., Suib, S. L., & Yang, H. (2019) Degradation of Congo Red dye by a Fe2O3@ CeO2-ZrO2/Palygorskite composite catalyst: synergetic effects of Fe2O3. Journal of colloid and interface science., 539, 135–145
  • [22] Kim, K., Ju, H., & Kim, J. (2016) Surface modification of BN/Fe3O4 hybrid particle to enhance interfacial affinity for high thermal conductive material. Polymer., 91, 74–80
  • [23] Kavci, E., Erkmen, J., & Bingöl, M. S. (2021) Removal of methylene blue dye from aqueous solution using citric acid modified apricot stone. Chemical Engineering Communications., 1–16
  • [24] Mondal, N. K., & Kar, S. (2018) Potentiality of banana peel for removal of Congo red dye from aqueous solution: isotherm, kinetics and thermodynamics studies. Applied Water Science., 8(6), 1–12
  • [25] Wekoye, J. N., Wanyonyi, W. C., Wangila, P. T., & Tonui, M. K. (2020) Kinetic and equilibrium studies of Congo red dye adsorption on cabbage waste powder. Environmental Chemistry and Ecotoxicology., 2, 24–31
  • [26] Lagergren, S. K. (1898) About the theory of so-called adsorption of soluble substances. Sven. Vetenskapsakad. Handingarl., 24, 1–39
  • [27] Proctor, A., & Toro-Vazquez, J. F. (1996) The Freundlich isotherm in studying adsorption in oil processing. Journal of the American Oil Chemists’ Society., 73(12), 1627–1633
  • [28] Hubbe, M. A., Azizian, S., & Douven, S. (2019) Implications of apparent pseudo-second-order adsorption kinetics onto cellulosic materials: A review. BioResources., 14(3)
  • [29] Ho, Y.-S., & McKay, G. (1999) Pseudo-second order model for sorption processes. Process biochemistry., 34(5), 451–465
  • [30] Wei, R., Xiao, Q., Zhan, C., You, Y., Zhou, X., & Liu, X. (2019) Polyarylene ether nitrile and boron nitride composites: coating with sulfonated polyarylene ether nitrile. e-Polymers., 19(1), 70–78
  • [31] Sobhanardakani, S., Jafari, A., Zandipak, R., & Meidanchi, A. (2018) Removal of heavy metal (Hg(II) and Cr(VI)) ions from aqueous solutions using Fe2O3@SiO2 thin films as a novel adsorbent. Process Safety and Environmental Protection., 120, 348–357
  • [32] Thangasamy, P., & Sathish, M. (2018) Dwindling the re-stacking by simultaneous exfoliation of boron nitride and decoration of α-Fe2O3 nanoparticles using a solvothermal route. New Journal of Chemistry., 42(7), 5090–5095
  • [33] Zhu, H.-Y., Jiang, R., Xiao, L., & Li, W. (2010) A novel magnetically separable γ-Fe2O3/crosslinked chitosan adsorbent: Preparation, characterization and adsorption application for removal of hazardous azo dye. Journal of Hazardous Materials., 179(1), 251–257
  • [34] Dhanavel, S., Sivaranjani, T., Sivakumar, K., Palani, P., Gupta, V. K., Narayanan, V., & Stephen, A. (2021) Cross-linked chitosan/hydroxylated boron nitride nanocomposites for co-delivery of curcumin and 5-fluorouracil towards human colon cancer cells. Journal of the Iranian Chemical Society., 18(2), 317–329
  • [35] Kavci, E. (2021) Malachite green adsorption onto modified pine cone: Isotherms, kinetics and thermodynamics mechanism. Chemical Engineering Communications., 208(3), 318–327
  • [36] Wakkel, M., Khiari, B., & Zagrouba, F. (2019) Textile wastewater treatment by agro-industrial waste: Equilibrium modelling, thermodynamics and mass transfer mechanisms of cationic dyes adsorption onto low-cost lignocellulosic adsorbent. Journal of the Taiwan Institute of Chemical Engineers., 96, 439–452
  • [37] Mahmoud, M. S., & Mahmoud, A. S. (2021) Wastewater treatment using nano bimetallic iron/copper, adsorption isotherm, kinetic studies, and artificial intelligence neural networks. Emergent Materials., 4(5), 1455–1463
  • [38] Hasanzadeh, M., Simchi, A., & Far, H. S. (2020) Nanoporous composites of activated carbon-metal organic frameworks for organic dye adsorption: Synthesis, adsorption mechanism and kinetics studies. Journal of Industrial and Engineering Chemistry., 81, 405–414

Removal of Congo Red From Water By Adsorption Onto Chitosan-BN-Fe2O3: Kinetic and Isotherm Studies

Year 2022, Volume: 15 Issue: 3, 684 - 698, 30.12.2022
https://doi.org/10.18185/erzifbed.1180213

Abstract

Dünyada artan teknoloji ile birlikte atıklar ciddi bir problem haline gelmiştir. Bu atıklardan en önemlilerinden olan atık boyar maddeler, çevre için önemli zararlar vermektedir. Bunların giderimi ile ilgili çalışmalar artmıştır. Bu çalışmada da Kongo red giderimi için Kitosana Boron Nitride- Fe2O3 katkılanıp adsorbent hazırlanmıştır. Bu adsorbentin (Ch-BN-Fe2O3) kimyasal yapıları FT-IR analizi ile doğrulanmıştır. Adsorpsiyon çalışmalarında adsorbent kütleleri, pH, temas süresi congo red giderimi üzerine etkileri araştırılmıştır. Buna göre 0,1 gram adsorbent kütlesi, pH 7, 60 dk sürede en yüksek %99,58 giderim gerçekleşmiştir. Ayrıca çalışmada termodinamik, izoterm ve kinetik çalışmalar gerçekleşmiştir. İzoterm çalışmalarında en uygun modelin langmuir olduğu belirlenmiş ve qmax değeri de 86,95 mg/g bulunmuştur. Bununla birlikte pseudo second order kinetic modeli uygun olduğu tespit edilmiştir

References

  • [1] Harja, M., Buema, G., & Bucur, D. (2022) Recent advances in removal of Congo Red dye by adsorption using an industrial waste. Scientific Reports., 12(1), 1–18
  • [2] Zhang, H., Chen, H., Azat, S., Mansurov, Z. A., Liu, X., Wang, J., Su, X., et al. (2018) Super adsorption capability of rhombic dodecahedral Ca-Al layered double oxides for Congo red removal. Journal of Alloys and Compounds., 768, 572–581
  • [3] Cheng, Y., Yan, F., Huang, F., Chu, W., Pan, D., Chen, Z., Zheng, J., et al. (2010) Bioremediation of Cr (VI) and immobilization as Cr (III) by Ochrobactrum anthropi. Environmental science & technology., 44(16), 6357–6363
  • [4] You, J., Liu, C., Feng, X., Lu, B., Xia, L., & Zhuang, X. (2022) In situ synthesis of ZnS nanoparticles onto cellulose/chitosan sponge for adsorption–photocatalytic removal of Congo red. Carbohydrate Polymers., 288, 119332
  • [5] Eltaweil, A. S., Elshishini, H. M., Ghatass, Z. F., & Elsubruiti, G. M. (2021) Ultra-high adsorption capacity and selective removal of Congo red over aminated graphene oxide modified Mn-doped UiO-66 MOF. Powder technology., 379, 407–416
  • [6] Mandal, S., Calderon, J., Marpu, S. B., Omary, M. A., & Shi, S. Q. (2021) Mesoporous activated carbon as a green adsorbent for the removal of heavy metals and Congo red: Characterization, adsorption kinetics, and isotherm studies. Journal of Contaminant Hydrology., 243, 103869
  • [7] Parvin, S., Biswas, B. K., Rahman, M. A., Rahman, M. H., Anik, M. S., & Uddin, M. R. (2019) Study on adsorption of Congo red onto chemically modified egg shell membrane. Chemosphere., 236, 124326
  • [8] Lee, J.-W., Choi, S.-P., Thiruvenkatachari, R., Shim, W.-G., & Moon, H. (2006) Submerged microfiltration membrane coupled with alum coagulation/powdered activated carbon adsorption for complete decolorization of reactive dyes. Water research., 40(3), 435–444
  • [9] Gu, J., Liu, H., Wang, S., Zhang, M., & Liu, Y. (2019) An innovative anaerobic MBR-reverse osmosis-ion exchange process for energy-efficient reclamation of municipal wastewater to NEWater-like product water. Journal of Cleaner Production., 230, 1287–1293
  • [10] Qi, L., Yu, J., & Jaroniec, M. (2013) Enhanced and suppressed effects of ionic liquid on the photocatalytic activity of TiO2. Adsorption., 19(2), 557–561
  • [11] Atab, M. S., Smallbone, A. J., & Roskilly, A. P. (2018) A hybrid reverse osmosis/adsorption desalination plant for irrigation and drinking water. Desalination., 444, 44–52
  • [12] Naddeo, V., Secondes, M. F. N., Borea, L., Hasan, S. W., Ballesteros Jr, F., & Belgiorno, V. (2020) Removal of contaminants of emerging concern from real wastewater by an innovative hybrid membrane process–UltraSound, Adsorption, and Membrane ultrafiltration (USAMe®). Ultrasonics Sonochemistry., 68, 105237
  • [13] Michael-Kordatou, I., Karaolia, P., & Fatta-Kassinos, D. (2018) The role of operating parameters and oxidative damage mechanisms of advanced chemical oxidation processes in the combat against antibiotic-resistant bacteria and resistance genes present in urban wastewater. Water research., 129, 208–230
  • [14] Nancharaiah, Y. V, & Sarvajith, M. (2019) Aerobic granular sludge process: a fast growing biological treatment for sustainable wastewater treatment. Current Opinion in Environmental Science & Health., 12, 57–65
  • [15] Rashid, R., Shafiq, I., Akhter, P., Iqbal, M. J., & Hussain, M. (2021) A state-of-the-art review on wastewater treatment techniques: the effectiveness of adsorption method. Environmental Science and Pollution Research., 28(8), 9050–9066
  • [16] Velusamy, S., Roy, A., Sundaram, S., & Kumar Mallick, T. (2021) A review on heavy metal ions and containing dyes removal through graphene oxide‐based adsorption strategies for textile wastewater treatment. The Chemical Record., 21(7), 1570–1610
  • [17] Saheed, I. O., Oh, W. Da, & Suah, F. B. M. (2021) Chitosan modifications for adsorption of pollutants–A review. Journal of hazardous materials., 408, 124889
  • [18] Qamar, S. A., Ashiq, M., Jahangeer, M., Riasat, A., & Bilal, M. (2020) Chitosan-based hybrid materials as adsorbents for textile dyes–A review. Case Studies in Chemical and Environmental Engineering., 2, 100021
  • [19] Yu, S., Wang, X., Pang, H., Zhang, R., Song, W., Fu, D., Hayat, T., et al. (2018) Boron nitride-based materials for the removal of pollutants from aqueous solutions: a review. Chemical Engineering Journal., 333, 343–360
  • [20] Li, J., Xiao, X., Xu, X., Lin, J., Huang, Y., Xue, Y., Jin, P., et al. (2013) Activated boron nitride as an effective adsorbent for metal ions and organic pollutants. Scientific reports., 3(1), 1–7
  • [21] Ouyang, J., Zhao, Z., Suib, S. L., & Yang, H. (2019) Degradation of Congo Red dye by a Fe2O3@ CeO2-ZrO2/Palygorskite composite catalyst: synergetic effects of Fe2O3. Journal of colloid and interface science., 539, 135–145
  • [22] Kim, K., Ju, H., & Kim, J. (2016) Surface modification of BN/Fe3O4 hybrid particle to enhance interfacial affinity for high thermal conductive material. Polymer., 91, 74–80
  • [23] Kavci, E., Erkmen, J., & Bingöl, M. S. (2021) Removal of methylene blue dye from aqueous solution using citric acid modified apricot stone. Chemical Engineering Communications., 1–16
  • [24] Mondal, N. K., & Kar, S. (2018) Potentiality of banana peel for removal of Congo red dye from aqueous solution: isotherm, kinetics and thermodynamics studies. Applied Water Science., 8(6), 1–12
  • [25] Wekoye, J. N., Wanyonyi, W. C., Wangila, P. T., & Tonui, M. K. (2020) Kinetic and equilibrium studies of Congo red dye adsorption on cabbage waste powder. Environmental Chemistry and Ecotoxicology., 2, 24–31
  • [26] Lagergren, S. K. (1898) About the theory of so-called adsorption of soluble substances. Sven. Vetenskapsakad. Handingarl., 24, 1–39
  • [27] Proctor, A., & Toro-Vazquez, J. F. (1996) The Freundlich isotherm in studying adsorption in oil processing. Journal of the American Oil Chemists’ Society., 73(12), 1627–1633
  • [28] Hubbe, M. A., Azizian, S., & Douven, S. (2019) Implications of apparent pseudo-second-order adsorption kinetics onto cellulosic materials: A review. BioResources., 14(3)
  • [29] Ho, Y.-S., & McKay, G. (1999) Pseudo-second order model for sorption processes. Process biochemistry., 34(5), 451–465
  • [30] Wei, R., Xiao, Q., Zhan, C., You, Y., Zhou, X., & Liu, X. (2019) Polyarylene ether nitrile and boron nitride composites: coating with sulfonated polyarylene ether nitrile. e-Polymers., 19(1), 70–78
  • [31] Sobhanardakani, S., Jafari, A., Zandipak, R., & Meidanchi, A. (2018) Removal of heavy metal (Hg(II) and Cr(VI)) ions from aqueous solutions using Fe2O3@SiO2 thin films as a novel adsorbent. Process Safety and Environmental Protection., 120, 348–357
  • [32] Thangasamy, P., & Sathish, M. (2018) Dwindling the re-stacking by simultaneous exfoliation of boron nitride and decoration of α-Fe2O3 nanoparticles using a solvothermal route. New Journal of Chemistry., 42(7), 5090–5095
  • [33] Zhu, H.-Y., Jiang, R., Xiao, L., & Li, W. (2010) A novel magnetically separable γ-Fe2O3/crosslinked chitosan adsorbent: Preparation, characterization and adsorption application for removal of hazardous azo dye. Journal of Hazardous Materials., 179(1), 251–257
  • [34] Dhanavel, S., Sivaranjani, T., Sivakumar, K., Palani, P., Gupta, V. K., Narayanan, V., & Stephen, A. (2021) Cross-linked chitosan/hydroxylated boron nitride nanocomposites for co-delivery of curcumin and 5-fluorouracil towards human colon cancer cells. Journal of the Iranian Chemical Society., 18(2), 317–329
  • [35] Kavci, E. (2021) Malachite green adsorption onto modified pine cone: Isotherms, kinetics and thermodynamics mechanism. Chemical Engineering Communications., 208(3), 318–327
  • [36] Wakkel, M., Khiari, B., & Zagrouba, F. (2019) Textile wastewater treatment by agro-industrial waste: Equilibrium modelling, thermodynamics and mass transfer mechanisms of cationic dyes adsorption onto low-cost lignocellulosic adsorbent. Journal of the Taiwan Institute of Chemical Engineers., 96, 439–452
  • [37] Mahmoud, M. S., & Mahmoud, A. S. (2021) Wastewater treatment using nano bimetallic iron/copper, adsorption isotherm, kinetic studies, and artificial intelligence neural networks. Emergent Materials., 4(5), 1455–1463
  • [38] Hasanzadeh, M., Simchi, A., & Far, H. S. (2020) Nanoporous composites of activated carbon-metal organic frameworks for organic dye adsorption: Synthesis, adsorption mechanism and kinetics studies. Journal of Industrial and Engineering Chemistry., 81, 405–414
There are 38 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Makaleler
Authors

Mehmet Semih Bingöl 0000-0002-4616-7143

Early Pub Date December 27, 2022
Publication Date December 30, 2022
Published in Issue Year 2022 Volume: 15 Issue: 3

Cite

APA Bingöl, M. S. (2022). Removal of Congo Red From Water By Adsorption Onto Chitosan-BN-Fe2O3: Kinetic and Isotherm Studies. Erzincan University Journal of Science and Technology, 15(3), 684-698. https://doi.org/10.18185/erzifbed.1180213