Research Article
BibTex RIS Cite

Agonistic Effects of Deinoxanthin on Tamoxifen Antiproliferative Activity on HER2 Positive Breast Cancer: An In vitro Study on MDA-MB-453

Year 2023, Volume: 16 Issue: 1, 138 - 154, 31.03.2023
https://doi.org/10.18185/erzifbed.1224499

Abstract

A good understanding of the pathogenesis of breast cancer, in which in 2020 an estimated 684,996 women across the world died, plays a vital role in the development of treatment methods. In recent years, estrogen receptor (ER), progesterone receptor (PR), and Epidermal Growth Factor receptor-2 (HER2) expression levels have been substantial prognostic markers.
The combinational therapy approach is the use of two or more active ingredients or methods. The most important benefit of this treatment method is to reduce the development of drug resistance since the probability of the carcinoma being resistant to more than one drug at the same time is low.
Tamoxifen, an estrogen receptor competitive and nonsteroidal drug, has been used for nearly 20 years to treat patients with hormone receptor-positive breast cancer.
Deinoxanthin is a xanthophyll derivative purified from the cell wall of a radiation-resistant bacterium, Deinococcus radiodurans. This xanthine derivative has been shown in some studies to have proapoptotic and antiproliferative effects on some types of cancer.
Within the study's scope, it aimed to increase the effectiveness of Tamoxifen with deinoxanthin. Using the ACTB gene as a reference to investigate the synergistic effect of Tamoxifen and deinoxanthin on the MDA-MB-453 breast cancer cell line; Expression levels of BAX, CASP-3, BCL-2, and HER2 genes were examined by RT-qPCR method. The ELISA method determined the amounts of BAX, CASP-3, BCL-2, and HER2 proteins and compared them with RT-qPCR results. It was determined that the antiproliferative effect of Tamoxifen on the HER2 positive breast cancer cell line was increased with the combination of deinoxanthin.

Supporting Institution

Erzincan Binali Yıldırım University, Scientific Research Projects Coordinatorship

Project Number

FLY-2019-643

Thanks

This study was supported by Erzincan Binali Yıldırım University Scientific Research Projects Coordinatorship, project no. FLY-2019-643. We also thank Seda KILINÇ for providing pure denioxanthin.

References

  • [1] Merey, S. (2002). “Breast cancer screening behavior in women”. University of Istanbul, Istanbul.
  • [2] Hart, C. D., Migliaccio, I., Malorni, L., Guarducci, C., Biganzoli, L., Di Leo, A. (2015). “Challenges in the management of advanced, ER-positive, HER2-negative breast cancer”. Nature reviews Clinical oncology, 12(9), 541-552.
  • [3] https://www.who.int/news-room/fact-sheets/detail/cancer Access Date: (2020)
  • [4] Gültekin, M., Boztaş, G. (2014). “Türkiye kanser istatistikleri”. Sağlık Bakanlığı, Türkiye Halk Sağlığı Kurumu, 43, 12-32.
  • [5] Harbeck, N., Penault-Llorca, F., Cortes, J., Gnant, M., Houssami, N., Poortmans, P., ... & Cardoso, F. (2019). “Breast cancer (Primer)”. Nat. Rev. Dis. Primers, 66.
  • [6] Janku, F., Hong, D. S., Fu, S., Piha-Paul, S. A., Naing, A., Falchook, G. S., ... & Kurzrock, R. (2014). “Assessing PIK3CA and PTEN in early-phase trials with PI3K/AKT/mTOR inhibitors”. Cell reports, 6(2), 377-387.
  • [7] Musgrove, E. A., Caldon, C. E., Barraclough, J., Stone, A., & Sutherland, R. L. (2011). “Cyclin D as a therapeutic target in cancer”. Nature Reviews Cancer, 11(8), 558-572.
  • [8] Tutun, H., Baydan, E. (2019). “İlaç geliştirmede reseptör analizinin önemi”. Mehmet Akif Ersoy Üniversitesi Sağlık Bilimleri Enstitüsü Dergisi, 4(1).
  • [9] Ibrahim, A. B., Zaki, H. F., Ibrahim, W. W., Omran, M. M., Shouman, S. A. (2019). “Evaluation of Tamoxifen and simvastatin as the combination therapy for the treatment of hormonal dependent breast cancer cells”. Toxicology Reports, 6, 1114-1126.
  • [10] Subramani, T., Yeap, S. K., Ho, W. Y., Ho, C. L., Omar, A. R., Aziz, S. A., ... & Alitheen, N. B. (2014). “Vitamin C suppresses cell death in MCF‐7 human breast cancer cells induced by Tamoxifen”. Journal of cellular and molecular medicine, 18(2), 305-313.
  • [11] Zhang, M. H., Man, H. T., Zhao, X. D., Dong, N., Ma, S. L. (2014). “Estrogen receptor-positive breast cancer molecular signatures and therapeutic potentials”. Biomedical reports, 2(1), 41-52.
  • [12] Aesoy, R., Sanchez, B. C., Norum, J. H., Lewensohn, R., Viktorsson, K., Linderholm, B. (2008). “An autocrine VEGF/VEGFR2 and p38 signaling loop confers resistance to 4-hydroxyTamoxifen in MCF-7 breast cancer cells”. Molecular Cancer Research, 6(10), 1630-1638.
  • [13] Osborne, C. K., Yochmowitz, M. G., Knight III, W. A., McGuire, W. L. (1980). “The value of estrogen and progesterone receptors in the treatment of breast cancer”. Cancer, 46(S12), 2884-2888.
  • [14] Osborne, C. K. (1998). “Tamoxifen in the treatment of breast cancer”. New England Journal of Medicine, 339(22), 1609-1618.
  • [15] Theriault, R. L., Carlson, R. W., Allred, C., Anderson, B. O., Burstein, H. J., Edge, S. B., ... & Kumar, R. (2013). “Breast cancer, version 3.2013”. Journal of the National Comprehensive Cancer Network, 11(7), 753-761.
  • [16] Blackwell, K. L., Haroon, Z. A., Shan, S., Saito, W., Broadwater, G., Greenberg, C. S., Dewhirst, M. W. (2000). “Tamoxifen inhibits angiogenesis in estrogen receptor-negative animal models”. Clinical cancer research, 6(11), 4359-4364.
  • [17] Liu, C. Y., Hung, M. H., Wang, D. S., Chu, P. Y., Su, J. C., Teng, T. H., ... & Chen, K. F. (2014). “Tamoxifen induces apoptosis through cancerous inhibitor of protein phosphatase 2A–dependent phospho-Akt inactivation in estrogen receptor–negative human breast cancer cells”. Breast cancer research, 16(5), 1-15.
  • [18] Ibrahim, A. B., Zaki, H. F., Ibrahim, W. W., Omran, M. M., Shouman, S. A. (2019). “Evaluation of Tamoxifen and simvastatin as the combination therapy for the treatment of hormonal dependent breast cancer cells”. Toxicology Reports, 6, 1114-1126.
  • [19] Choi, Y. J., Hur, J. M., Lim, S., Jo, M., Kim, D. H., Choi, J. I. (2014). “Induction of apoptosis by deinoxanthin in human cancer cells”. Anticancer research, 34(4), 1829-1835.
  • [20] Sharoni, Y., Danilenko, M., Walfisch, S., Amir, H., Nahum, A., Ben-Dor, A., ... & Levy, J. (2002). “Role of gene regulation in the anticancer activity of carotenoids”. Pure and applied chemistry, 74(8), 1469-1477.
  • [21] Rao, A. V., Rao, L. G. (2007). “Carotenoids and human health”. Pharmacological research, 55(3), 207-216.
  • [22] Krinsky, N. I., Johnson, E. J. (2005). “Carotenoid actions and their relation to health and disease”. Molecular aspects of medicine, 26(6), 459-516.
  • [23] Cheng, J., Zhang, Z., Zheng, Z., Lv, G., Wang, L., Tian, B., Hua, Y. (2014). “Antioxidative and hepatoprotective activities of deinoxanthin-rich extract from Deinococcus radiodurans R1 against carbon tetrachloride-induced liver injury in mice”. Tropical Journal of Pharmaceutical Research, 13(4), 581-586.
  • [24] Zhou, Z., Zhang, W., Su, S., Chen, M., Lu, W., Lin, M., ... & Xu, Y. (2015). “CYP287A1 is a carotenoid 2-β-hydroxylase required for deinoxanthin biosynthesis in Deinococcus radiodurans R1”. Applied microbiology and biotechnology, 99(24), 10539-10546.
  • [25] Lemee, L., Peuchant, E., Clerc, M., Brunner, M., Pfander, H. (1997). “Deinoxanthin: a new carotenoid isolated from Deinococcus radiodurans”. Tetrahedron, 53(3), 919-926.
  • [26] Ji, H., (2010) “Insight into the strong antioxidant activity of deinoxanthin, a unique carotenoid in Deinococcus radiodurans”, International Journal of Molecular Sciences 11:4506-4510.
  • [27] Tian, B., Xu, Z., Sun, Z., Lin, J., Hua, Y. (2007). “Evaluation of the antioxidant effects of carotenoids from Deinococcus radiodurans through targeted mutagenesis, chemiluminescence, and DNA damage analyses”. Biochimica et Biophysica Acta (BBA)-General Subjects, 1770(6), 902-911.
  • [28] Apel, K., Hirt, H. (2004). “Reactive oxygen species: metabolism, oxidative stress, and signaling transduction”. Annual review of plant biology, 55, 373.
  • [29] Tanaka, T., Shnimizu, M., Moriwaki, H. (2012). “Cancer chemoprevention by caroteno”. Molecules, 17(3), 3202-3242.
  • [30] Sun, Z., Shen, S., Tian, B., Wang, H., Xu, Z., Wang, L., Hua, Y. (2009). “Functional analysis of γ-carotene ketolase involved in the carotenoid biosynthesis of Deinococcus radiodurans”. FEMS microbiology letters, 301(1), 21-27.
  • [31] Tian, B., Xu, Z., Sun, Z., Lin, J., Hua, Y. (2007). “Evaluation of the antioxidant effects of carotenoids from Deinococcus radiodurans through targeted mutagenesis, chemiluminescence, and DNA damage analyses”. Biochimica et Biophysica Acta (BBA)-General Subjects, 1770(6), 902-911.
  • [32] Muller, K., Carpenter, K. L., Challis, I. R., Skepper, J. N., Arends, M. J. (2002). Carotenoids induce apoptosis in the T-lymphoblast cell line Jurkat E6.1”. Free radical research, 36(7), 791-802.
  • [33] Kotake-Nara, E., Terasaki, M., Nagao, A. (2005). “Characterization of apoptosis induced by fucoxanthin in human promyelocytic leukemia cells”. Bioscience, biotechnology, and biochemistry, 69(1), 224-227.
  • [34] Özcan, O., Erdal, H., Çakırca, G., Yönden, Z. (2015). “Oxidative stress and its impacts on intracellular lipids, proteins and DNA”. J Clin Exp Invest, 6(3), 331-336.
  • [35] Rahal, A., Kumar, A., Singh, V., Yadav, B., Tiwari, R., Chakraborty, S., Dhama, K. (2014). “Oxidative stress, prooxidants, and antioxidants: the interplay”. BioMed research international, 2014.
  • [36] Vranic, S., Gatalica, Z., Wang, Z. Y. (2011). Update on the molecular profile of the MDA-MB-453 cell line as a model for apocrine breast carcinoma studies. Oncology letters, 2(6), 1131-1137.
  • [37] Chen, J., Xiong, W. B., Xiong, Y., Wu, Y. Y., Chen, X. J., Shao, Z. J., ... & Zhou, L. M. (2011). Calycosin Stimulates Proliferation of Estrogen Receptor‐Positive Human Breast Cancer Cells Through Downregulation of Bax Gene Expression and Upregulation of Bcl‐2 Gene Expression at Low Concentrations. Journal of Parenteral and Enteral Nutrition, 35(6), 763-769.
  • [38] Maqbool, S. N., Lim, S. C., Park, K. C., Hanif, R., Richardson, D. R., Jansson, P. J., & Kovacevic, Z. (2020). Overcoming tamoxifen resistance in oestrogen receptor‐positive breast cancer using the novel thiosemicarbazone anti‐cancer agent, DpC. British journal of pharmacology, 177(10), 2365-2380.

Deinoksantinin HER2 Pozitif Meme Kanserinde Tamoksifenin Antiproliferatif Aktivitesi Üzerindeki Agonistik Etkileri: MDA-MB-453 Üzerine Bir In vitro Çalışma

Year 2023, Volume: 16 Issue: 1, 138 - 154, 31.03.2023
https://doi.org/10.18185/erzifbed.1224499

Abstract

2020 yılında dünya genelinde 684.996 kadının öldüğü tahmin edilen meme kanserinin patogenezinin iyi anlaşılması, tedavi yöntemlerinin geliştirilmesinde hayati bir rol oynamaktadır. Son yıllarda östrojen reseptörü (ER), progesteron reseptörü (PR), Epidermal Büyüme Faktör reseptörü-2 (HER2) ifade düzeyleri önemli prognostik belirteçler olmuştur.
Kombinasyonel terapi yaklaşımı, iki veya daha fazla aktif maddenin veya yöntemin kullanılmasıdır. Bu tedavi yönteminde en önemli kazanç karsinomun aynı anda birden fazla ilaca karşı direnç gösterme olasılığının düşük olması sebebiyle ilaç direnci gelişimini azaltmaktır.
Östrojen reseptörü yarışmalı ve steroid olmayan bir bileşik olan Tamoksifen, hormon reseptör pozitif meme kanseri olan hastaları tedavi etmek için yaklaşık 20 yıldır kullanılmaktadır.
Deinoksantin, radyasyona dirençli bir bakteri olan Deinococcus radiodurans'ın hücre duvarından saflaştırılan bir ksantofil türevidir. Bu ksantin türevinin bazı kanser türleri üzerinde proapoptotik ve antiproliferatif etkilere sahip olduğu bazı çalışmalarda gösterilmiştir.
Çalışma kapsamında Tamoksifen'in deinoksantin ile etkinliğinin artırılması hedeflendi. Tamoksifen ve deinoksantinin MDA-MB-453 meme kanseri hücre hattı üzerindeki sinerjik etkisini araştırmak için ACTB geni referans olarak kullanılarak; BAX, CASP-3, BCL-2 ve HER2 genlerinin ifade seviyeleri RT-qPCR yöntemi ile incelenmiştir. BAX, CASP-3, BCL-2 ve HER2 proteinlerinin miktarları ELISA yöntemi ile belirlenmiş ve RT-qPCR sonuçları ile karşılaştırılmıştır. Tamoksifenin HER2 pozitif meme kanseri hücre hattı üzerindeki antiproliferatif etkisinin deinoksantin kombinasyonu ile arttığı belirlendi.

Project Number

FLY-2019-643

References

  • [1] Merey, S. (2002). “Breast cancer screening behavior in women”. University of Istanbul, Istanbul.
  • [2] Hart, C. D., Migliaccio, I., Malorni, L., Guarducci, C., Biganzoli, L., Di Leo, A. (2015). “Challenges in the management of advanced, ER-positive, HER2-negative breast cancer”. Nature reviews Clinical oncology, 12(9), 541-552.
  • [3] https://www.who.int/news-room/fact-sheets/detail/cancer Access Date: (2020)
  • [4] Gültekin, M., Boztaş, G. (2014). “Türkiye kanser istatistikleri”. Sağlık Bakanlığı, Türkiye Halk Sağlığı Kurumu, 43, 12-32.
  • [5] Harbeck, N., Penault-Llorca, F., Cortes, J., Gnant, M., Houssami, N., Poortmans, P., ... & Cardoso, F. (2019). “Breast cancer (Primer)”. Nat. Rev. Dis. Primers, 66.
  • [6] Janku, F., Hong, D. S., Fu, S., Piha-Paul, S. A., Naing, A., Falchook, G. S., ... & Kurzrock, R. (2014). “Assessing PIK3CA and PTEN in early-phase trials with PI3K/AKT/mTOR inhibitors”. Cell reports, 6(2), 377-387.
  • [7] Musgrove, E. A., Caldon, C. E., Barraclough, J., Stone, A., & Sutherland, R. L. (2011). “Cyclin D as a therapeutic target in cancer”. Nature Reviews Cancer, 11(8), 558-572.
  • [8] Tutun, H., Baydan, E. (2019). “İlaç geliştirmede reseptör analizinin önemi”. Mehmet Akif Ersoy Üniversitesi Sağlık Bilimleri Enstitüsü Dergisi, 4(1).
  • [9] Ibrahim, A. B., Zaki, H. F., Ibrahim, W. W., Omran, M. M., Shouman, S. A. (2019). “Evaluation of Tamoxifen and simvastatin as the combination therapy for the treatment of hormonal dependent breast cancer cells”. Toxicology Reports, 6, 1114-1126.
  • [10] Subramani, T., Yeap, S. K., Ho, W. Y., Ho, C. L., Omar, A. R., Aziz, S. A., ... & Alitheen, N. B. (2014). “Vitamin C suppresses cell death in MCF‐7 human breast cancer cells induced by Tamoxifen”. Journal of cellular and molecular medicine, 18(2), 305-313.
  • [11] Zhang, M. H., Man, H. T., Zhao, X. D., Dong, N., Ma, S. L. (2014). “Estrogen receptor-positive breast cancer molecular signatures and therapeutic potentials”. Biomedical reports, 2(1), 41-52.
  • [12] Aesoy, R., Sanchez, B. C., Norum, J. H., Lewensohn, R., Viktorsson, K., Linderholm, B. (2008). “An autocrine VEGF/VEGFR2 and p38 signaling loop confers resistance to 4-hydroxyTamoxifen in MCF-7 breast cancer cells”. Molecular Cancer Research, 6(10), 1630-1638.
  • [13] Osborne, C. K., Yochmowitz, M. G., Knight III, W. A., McGuire, W. L. (1980). “The value of estrogen and progesterone receptors in the treatment of breast cancer”. Cancer, 46(S12), 2884-2888.
  • [14] Osborne, C. K. (1998). “Tamoxifen in the treatment of breast cancer”. New England Journal of Medicine, 339(22), 1609-1618.
  • [15] Theriault, R. L., Carlson, R. W., Allred, C., Anderson, B. O., Burstein, H. J., Edge, S. B., ... & Kumar, R. (2013). “Breast cancer, version 3.2013”. Journal of the National Comprehensive Cancer Network, 11(7), 753-761.
  • [16] Blackwell, K. L., Haroon, Z. A., Shan, S., Saito, W., Broadwater, G., Greenberg, C. S., Dewhirst, M. W. (2000). “Tamoxifen inhibits angiogenesis in estrogen receptor-negative animal models”. Clinical cancer research, 6(11), 4359-4364.
  • [17] Liu, C. Y., Hung, M. H., Wang, D. S., Chu, P. Y., Su, J. C., Teng, T. H., ... & Chen, K. F. (2014). “Tamoxifen induces apoptosis through cancerous inhibitor of protein phosphatase 2A–dependent phospho-Akt inactivation in estrogen receptor–negative human breast cancer cells”. Breast cancer research, 16(5), 1-15.
  • [18] Ibrahim, A. B., Zaki, H. F., Ibrahim, W. W., Omran, M. M., Shouman, S. A. (2019). “Evaluation of Tamoxifen and simvastatin as the combination therapy for the treatment of hormonal dependent breast cancer cells”. Toxicology Reports, 6, 1114-1126.
  • [19] Choi, Y. J., Hur, J. M., Lim, S., Jo, M., Kim, D. H., Choi, J. I. (2014). “Induction of apoptosis by deinoxanthin in human cancer cells”. Anticancer research, 34(4), 1829-1835.
  • [20] Sharoni, Y., Danilenko, M., Walfisch, S., Amir, H., Nahum, A., Ben-Dor, A., ... & Levy, J. (2002). “Role of gene regulation in the anticancer activity of carotenoids”. Pure and applied chemistry, 74(8), 1469-1477.
  • [21] Rao, A. V., Rao, L. G. (2007). “Carotenoids and human health”. Pharmacological research, 55(3), 207-216.
  • [22] Krinsky, N. I., Johnson, E. J. (2005). “Carotenoid actions and their relation to health and disease”. Molecular aspects of medicine, 26(6), 459-516.
  • [23] Cheng, J., Zhang, Z., Zheng, Z., Lv, G., Wang, L., Tian, B., Hua, Y. (2014). “Antioxidative and hepatoprotective activities of deinoxanthin-rich extract from Deinococcus radiodurans R1 against carbon tetrachloride-induced liver injury in mice”. Tropical Journal of Pharmaceutical Research, 13(4), 581-586.
  • [24] Zhou, Z., Zhang, W., Su, S., Chen, M., Lu, W., Lin, M., ... & Xu, Y. (2015). “CYP287A1 is a carotenoid 2-β-hydroxylase required for deinoxanthin biosynthesis in Deinococcus radiodurans R1”. Applied microbiology and biotechnology, 99(24), 10539-10546.
  • [25] Lemee, L., Peuchant, E., Clerc, M., Brunner, M., Pfander, H. (1997). “Deinoxanthin: a new carotenoid isolated from Deinococcus radiodurans”. Tetrahedron, 53(3), 919-926.
  • [26] Ji, H., (2010) “Insight into the strong antioxidant activity of deinoxanthin, a unique carotenoid in Deinococcus radiodurans”, International Journal of Molecular Sciences 11:4506-4510.
  • [27] Tian, B., Xu, Z., Sun, Z., Lin, J., Hua, Y. (2007). “Evaluation of the antioxidant effects of carotenoids from Deinococcus radiodurans through targeted mutagenesis, chemiluminescence, and DNA damage analyses”. Biochimica et Biophysica Acta (BBA)-General Subjects, 1770(6), 902-911.
  • [28] Apel, K., Hirt, H. (2004). “Reactive oxygen species: metabolism, oxidative stress, and signaling transduction”. Annual review of plant biology, 55, 373.
  • [29] Tanaka, T., Shnimizu, M., Moriwaki, H. (2012). “Cancer chemoprevention by caroteno”. Molecules, 17(3), 3202-3242.
  • [30] Sun, Z., Shen, S., Tian, B., Wang, H., Xu, Z., Wang, L., Hua, Y. (2009). “Functional analysis of γ-carotene ketolase involved in the carotenoid biosynthesis of Deinococcus radiodurans”. FEMS microbiology letters, 301(1), 21-27.
  • [31] Tian, B., Xu, Z., Sun, Z., Lin, J., Hua, Y. (2007). “Evaluation of the antioxidant effects of carotenoids from Deinococcus radiodurans through targeted mutagenesis, chemiluminescence, and DNA damage analyses”. Biochimica et Biophysica Acta (BBA)-General Subjects, 1770(6), 902-911.
  • [32] Muller, K., Carpenter, K. L., Challis, I. R., Skepper, J. N., Arends, M. J. (2002). Carotenoids induce apoptosis in the T-lymphoblast cell line Jurkat E6.1”. Free radical research, 36(7), 791-802.
  • [33] Kotake-Nara, E., Terasaki, M., Nagao, A. (2005). “Characterization of apoptosis induced by fucoxanthin in human promyelocytic leukemia cells”. Bioscience, biotechnology, and biochemistry, 69(1), 224-227.
  • [34] Özcan, O., Erdal, H., Çakırca, G., Yönden, Z. (2015). “Oxidative stress and its impacts on intracellular lipids, proteins and DNA”. J Clin Exp Invest, 6(3), 331-336.
  • [35] Rahal, A., Kumar, A., Singh, V., Yadav, B., Tiwari, R., Chakraborty, S., Dhama, K. (2014). “Oxidative stress, prooxidants, and antioxidants: the interplay”. BioMed research international, 2014.
  • [36] Vranic, S., Gatalica, Z., Wang, Z. Y. (2011). Update on the molecular profile of the MDA-MB-453 cell line as a model for apocrine breast carcinoma studies. Oncology letters, 2(6), 1131-1137.
  • [37] Chen, J., Xiong, W. B., Xiong, Y., Wu, Y. Y., Chen, X. J., Shao, Z. J., ... & Zhou, L. M. (2011). Calycosin Stimulates Proliferation of Estrogen Receptor‐Positive Human Breast Cancer Cells Through Downregulation of Bax Gene Expression and Upregulation of Bcl‐2 Gene Expression at Low Concentrations. Journal of Parenteral and Enteral Nutrition, 35(6), 763-769.
  • [38] Maqbool, S. N., Lim, S. C., Park, K. C., Hanif, R., Richardson, D. R., Jansson, P. J., & Kovacevic, Z. (2020). Overcoming tamoxifen resistance in oestrogen receptor‐positive breast cancer using the novel thiosemicarbazone anti‐cancer agent, DpC. British journal of pharmacology, 177(10), 2365-2380.
There are 38 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Makaleler
Authors

Nihan Günay 0000-0003-1651-3575

Mehmet Kuzucu 0000-0002-7786-7687

Project Number FLY-2019-643
Early Pub Date March 29, 2023
Publication Date March 31, 2023
Published in Issue Year 2023 Volume: 16 Issue: 1

Cite

APA Günay, N., & Kuzucu, M. (2023). Agonistic Effects of Deinoxanthin on Tamoxifen Antiproliferative Activity on HER2 Positive Breast Cancer: An In vitro Study on MDA-MB-453. Erzincan University Journal of Science and Technology, 16(1), 138-154. https://doi.org/10.18185/erzifbed.1224499