Research Article
BibTex RIS Cite
Year 2023, Volume: 16 Issue: 2, 453 - 464, 31.08.2023
https://doi.org/10.18185/erzifbed.1279953

Abstract

References

  • [1] Gonelimali, F. D., Lin, J., Miao, W., Xuan, J., Charles, F., Chen, M., & Hatab, S. R. (2018). Antimicrobial properties and mechanism of action of some plant extracts against food pathogens and spoilage microorganisms. Frontiers in microbiology, 9, 1639.
  • [2] Ishangulyyev, R., Kim, S., & Lee, S. H. (2019). Understanding food loss and waste—why are we losing and wasting food?. Foods, 8(8), 297.
  • [3] Odeyemi, O. A., Alegbeleye, O. O., Strateva, M., & Stratev, D. (2020). Understanding spoilage microbial community and spoilage mechanisms in foods of animal origin. Comprehensive reviews in food science and food safety, 19(2), 311-331.
  • [4] Talari, G., Cummins, E., McNamara, C., & O'Brien, J. (2022). State of the art review of Big Data and web-based Decision Support Systems (DSS) for food safety risk assessment with respect to climate change. Trends in Food Science & Technology, 126, 192-204.
  • [5] Chiozzi, V., Agriopoulou, S., & Varzakas, T. (2022). Advances, applications, and comparison of thermal (pasteurization, sterilization, and aseptic packaging) against non-thermal (ultrasounds, UV radiation, ozonation, high hydrostatic pressure) technologies in food processing. Applied Sciences, 12(4), 2202.
  • [6] Kalem, I. K., Bhat, Z. F., Kumar, S., & Desai, A. (2017). Terminalia arjuna: A novel natural preservative for improved lipid oxidative stability and storage quality of muscle foods. Food Science and Human Wellness, 6(4), 167-175.
  • [7] Yuan, H., Ma, Q., Ye, L., & Piao, G. (2016). The traditional medicine and modern medicine from natural products. Molecules, 21(5), 559.
  • [8] Benabderrahim, M. A., Yahia, Y., Bettaieb, I., Elfalleh, W., & Nagaz, K. (2019). Antioxidant activity and phenolic profile of a collection of medicinal plants from Tunisian arid and Saharan regions. Industrial Crops and Products, 138, 111427.
  • [9] Pammi, S. S., Suresh, B., & Giri, A. (2023). Antioxidant potential of medicinal plants. Journal of Crop Science and Biotechnology, 26(1), 13-26.
  • [10] El-Maati, M. F. A., Mahgoub, S. A., Labib, S. M., Al-Gaby, A. M., & Ramadan, M. F. (2016). Phenolic extracts of clove (Syzygium aromaticum) with novel antioxidant and antibacterial activities. European Journal of Integrative Medicine, 8(4), 494-504.
  • [11] Ozogul, Y., Boğa, E. K., Akyol, I., Durmus, M., Ucar, Y., Regenstein, J. M., & Köşker, A. R. (2020). Antimicrobial activity of thyme essential oil nanoemulsions on spoilage bacteria of fish and food-borne pathogens. Food Bioscience, 36, 100635.
  • [12] Mutlu‐Ingok, A., Catalkaya, G., Capanoglu, E., & Karbancioglu‐Guler, F. (2021). Antioxidant and antimicrobial activities of fennel, ginger, oregano and thyme essential oils. Food Frontiers, 2(4), 508-518.
  • [13] Jovanović, A. A., Djordjević, V. B., Petrović, P. M., Pljevljakušić, D. S., Zdunić, G. M., Šavikin, K. P., & Bugarski, B. M. (2021). The influence of different extraction conditions on polyphenol content, antioxidant and antimicrobial activities of wild thyme. Journal of Applied Research on Medicinal and Aromatic Plants, 25, 100328.
  • [14] Akhtar, S., Waseem, M., Ahmad, N., Ismail, T., Ahmad, Z., Manzoor, M. F., & Siddeeg, A. (2019). Polyphenol-rich extracts of traditional culinary spices and herbs and their antibacterial activity in minced beef. Journal of Food Quality, 2019, 1-9.
  • [15] Ökmen, G., Arslan, K., Tekin, R., Çamur, İ. & Gorda, S. (2021). Antimicrobial and Antioxidant Activities of Different Spice Extracts. Avrupa Bilim ve Teknoloji Dergisi, Ejosat 2021 Ocak, 421-429. DOI: 10.31590/ejosat.848958
  • [16] Rahman, M. H., Asaduzzaman, M., & Kabir, M. S. (2021). Determination of antimicrobial activity of traditional spices extracts against clinical isolates in Dhaka city. Stamford Journal of Microbiology, 11(1), 17-19.
  • [17] Latti, P., Ramanarayanan, S., & Prashant, G. M. (2019). Antifungal efficacy of spice extracts against Candida albicans: An in vitro study. Indian Journal of Community Medicine: Official Publication of Indian Association of Preventive & Social Medicine, 44(Suppl 1), S77.
  • [18] Długosz, O., Ochnik, M., Sochocka, M., Franz, D., Orzechowska, B., Anna, C. K., ... & Banach, M. (2022). Antimicrobial and antiviral activity of selenium sulphide nanoparticles synthesised in extracts from spices in natural deep eutectic solvents (NDES). Sustainable Materials and Technologies, 32, e00433.
  • [19] Sasikumar, J. M., Erba, O., & Egigu, M. C. (2020). In vitro antioxidant activity and polyphenolic content of commonly used spices from Ethiopia. Heliyon, 6(9), e05027.
  • [20] Muştu, Ç. (2021). Safranın (Crocus sativus L.) özellikleri, tarihçesi ve gıdalarda kullanımı üzerine bir araştırma. Food and Health, 7(4), 300-310.
  • [21] Cortés-Rojas, D. F., de Souza, C. R. F., & Oliveira, W. P. (2014). Clove (Syzygium aromaticum): a precious spice. Asian Pacific journal of tropical biomedicine, 4(2), 90-96.
  • [22] Okmen, G., Mammadhkanli, M., & Arslan, K. (2022). The Antibacterial Activities of Lavandula angustifolia L., Mentha piperita L., and Ribes nigrum L. against Oral Bacteria, and Their Antioxidant Activities. Turkish Journal of Agriculture-Food Science and Technology, 10(8), 1552-1557.
  • [24] Bauer, A. W. (1966). Antibiotic susceptibility testing by a standardized single diffusion method. Am. J. Clin. Pathol., 45, 493-496.
  • [25] Okmen, G., Tekin, R., Camur, I., Arslan, K., & Eroglu, B. (2019). Determination of Biological Activities of Cardopatium corymbosum L. against Food Pathogens. Turkish Journal of Agriculture-Food Science and Technology, 7(sp1), 167-172.
  • [26] Ökmen, G., Mammadhkanlı, M., & Vurkun, M. (2018). The antibacterial activities of Syzygium aromaticum (L.) Merr. & Perry against oral bacteria and its antioxidant and antimutagenic activities. International Journal of Pharmaceutical Sciences and Research (IJPSR); Vol. 9(11): 4634-4641.
  • [27] Brand-Williams, W., Cuvelier, M.E., Berset, C. (1995). Use of a free radical method to evaluate antioxidant activity. Food Sci. Technology, 28; 25-30.
  • [28] Re R, Pellegrini N, Proteggente A, Pannala A, Yang M, Rice-Evans C, Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic. Biol. Medical 1999; 26; 1231–1237.
  • [29] Orhan, D. D., Orhan, N., Ozcelik, B., & Ergun, F. (2009). Biological activities of Vitis vinifera L. leaves. Turk J Biol, 33(1), 341-8.
  • [30] Mostaqim, S., Saha, S. K., Hani, U., Paul, S. K., Sharmin, M., Basak, S., Begum, S. A., Salma, U., & Shahabuddin, M. S. (2019). Antibacterial Activities of Clove (Syzygium aromaticum) Extracts Against Three Food Borne Pathogens: Staphylococcus aureus, Escherichia coli and Pseudomonas aeruginosa. Mymensingh medical journal : MMJ, 28(4), 779–791.
  • [31] Pandey, A., & Singh, P. (2011). Antibacterial activity of Syzygium aromaticum (clove) with metal ion effect against food borne pathogens. Asian J Plant Sci Res, 1(2), 69-80.
  • [32] Mostafa, A. A., Al-Askar, A. A., Almaary, K. S., Dawoud, T. M., Sholkamy, E. N., & Bakri, M. M. (2018). Antimicrobial activity of some plant extracts against bacterial strains causing food poisoning diseases. Saudi journal of biological sciences, 25(2), 361-366.
  • [33] Wang, Q. I. N., Ou, Z., Lei, H., Zeng, X., Ying, Y. U. E., & Bai, W. (2012). Antimicrobial activities of a new formula of spice aqueous extracts against foodborne bacteria. Journal of food processing and preservation, 36(4), 374-381.
  • [34] Banik, A., Abony, M., Zerin, T., & Datta, S. (2018). Antibacterial activity of Allium sativum, Syzygium aromaticum, and Cinnamomum zeylanicum against food borne pathogens in vitro. IOSR Journal of Pharmacy and Biological Sciences, 13, 68-73.
  • [35] Shahbazi, Y. (2019). Antioxidant, antibacterial, and antifungal properties of nanoemulsion of clove essential oil. Nanomedicine Research Journal, 4(4), 204-208.
  • [36] Hoque, M. M., Inatsu, M., Juneja, V., & Kawamoto, S. (2008). Antimicrobial activity of clove and cinnamon extracts against food borne pathogens and spoilage bacteria and inactivation of Listeria monocytogenes in ground chicken meat with their essential oils. Report of National Food Research Institute, 72, 9-21.
  • [37] Ishaq, A., Syed, Q. A., Khan, M. I., & Zia, M. A. (2019). Characterising and optimising antioxidant and antimicrobial properties of clove extracts against food-borne pathogenic bacteria. International Food Research Journal, 26(4), 1165-1172.
  • [38] Shukla, V., Mendiratta, S., Zende, R., & Badhe, S. (2022). Evaluation of the in-vitro antimicrobial activity of clove and oregano essential oils against foodborne microbes and its comparison with antibiotics. The Pharma Innovation Journal, 11, 732-8.
  • [39] Saeed, M., Nadeem, M., Khan, M. R., Shabbir, M. A., Shehzad, A., & Amir, R. M. (2013). Antimicrobial activity of Syzygium aromaticum extracts against food spoilage bacteria. African Journal of Microbiology Research, 7(41), 4848-4856.
  • [40] Yassin, M. T., Al-Askar, A. A., Mostafa, A. A. F., & El-Sheikh, M. A. (2020). Bioactivity of Syzygium aromaticum (L.) Merr. & LM Perry extracts as potential antimicrobial and anticancer agents. Journal of King Saud University-Science, 32(8), 3273-3278.
  • [41] Witkowska, A. M., Hickey, D. K., Alonso-Gomez, M., & Wilkinson, M. (2013). Evaluation of antimicrobial activities of commercial herb and spice extracts against selected food-borne bacteria. Journal of Food Research, 2(4), 37.
  • [42] Mashkor, I. M. A. A. (2015). Evaluation of antioxidant activity of clove (Syzygium aromaticum). Int. J. Chem. Sci, 13(1), 22-30.
  • [43] Baghshahi, H., Riasi, A., Mahdavi, A. H., & Shirazi, A. (2014). Antioxidant effects of clove bud (Syzygium aromaticum) extract used with different extenders on ram spermatozoa during cryopreservation. Cryobiology, 69(3), 482-487.
  • [44] Atawodi, S. E., Atawodi, J. C., Pfundstein, B., Spiegelhalder, B., Bartsch, H., & Owen, R. (2011). Assessment of the polyphenol components and in vitro antioxidant properties of Syzygium aromaticum (L.) Merr. & Perry. Electronic Journal of Environmental, Agricultural & Food Chemistry, 10(3).
  • [45] Hidayati, M. D., Ersam, T., Shimizu, K., & Fatmawati, S. (2017). Antioxidant activity of Syzygium polyanthum extracts. Indonesian Journal of Chemistry, 17(1), 49-53.
  • [46] Kutlu, Z., Dumlu, F., Aydın Berktaş, Ö. & Odabasoglu, F. (2020). Investigation of In Vitro Antioxidant Activity of Glycrrhiza glabra and Syzygium aromaticum Extracts. Eurasian Journal of Biological and Chemical Sciences, 3 (1), 55-58.
  • [47] Turgay, O., & Esen, Y. (2015). Antioxidant, total phenolic and antimicrobial characteristics of some species. Bulgarian Journal of Agricultural Science, 21(3), 498-503.
  • [48] Radha krishnan, K. Babuskin, S., Babu, P. A. S., Sasikala, M., Sabina, K., Archana, G., Sivarajan, M., & Sukumar, M. (2014). Antimicrobial and antioxidant effects of spice extracts on the shelf life extension of raw chicken meat. International journal of food microbiology, 171, 32-40.

The Antioxidant, Antimicrobial, and Total Phenolic Potential of Clove Extracts for Inhibition of Food Pathogens

Year 2023, Volume: 16 Issue: 2, 453 - 464, 31.08.2023
https://doi.org/10.18185/erzifbed.1279953

Abstract

Food spoilage pathogens cause food waste and consumption of pathogen-contaminated food threatens human health. New approaches that do not harm the environment are needed for decreasing the enlargement of pathogenic microorganisms without using chemical preservatives. The current work intended to appraise the TPC value, anti-oxidant, anti-bacterial, and anti-fungal properties of clove different extracts. The antimicrobial tests were evaluated by disc diffusion, MIC, and MBC tests. Antioxidant potential was conducted using ABTS• and DPPH• radical, and TPC was tested by the Folin–Ciocalteu reagent assay. As a result, the highest antimicrobial activity was found against E. faecalis by 19,30±0,17 mm zone diameter from methanol extract. The lowest activity was obtained from aqueous extract over S. Typhimurium by 7,17±0,29 mm zone diameter. MIC and MBC results were examined, and it was determined that clove ethanol extract showed the highest MIC value was 2.5-10 mg/ml. MBC test results also revealed that cloves ethanol extract has the highest activity with 5->10 mg/ml. The antioxidant data of cloves were examined, and the highest DPPH• and ABTS• sweep activities were determined in 60.93±1.67% aqueous and 85.81±1.08 ethanol extract, respectively. The TPC results revealed that the highest content was provided from the aqueous extract with 189.84±2.84 mg/g GA. The results gained from the study bring to light that clove has a high potential for antimicrobial, antioxidant, and total phenolic content.

References

  • [1] Gonelimali, F. D., Lin, J., Miao, W., Xuan, J., Charles, F., Chen, M., & Hatab, S. R. (2018). Antimicrobial properties and mechanism of action of some plant extracts against food pathogens and spoilage microorganisms. Frontiers in microbiology, 9, 1639.
  • [2] Ishangulyyev, R., Kim, S., & Lee, S. H. (2019). Understanding food loss and waste—why are we losing and wasting food?. Foods, 8(8), 297.
  • [3] Odeyemi, O. A., Alegbeleye, O. O., Strateva, M., & Stratev, D. (2020). Understanding spoilage microbial community and spoilage mechanisms in foods of animal origin. Comprehensive reviews in food science and food safety, 19(2), 311-331.
  • [4] Talari, G., Cummins, E., McNamara, C., & O'Brien, J. (2022). State of the art review of Big Data and web-based Decision Support Systems (DSS) for food safety risk assessment with respect to climate change. Trends in Food Science & Technology, 126, 192-204.
  • [5] Chiozzi, V., Agriopoulou, S., & Varzakas, T. (2022). Advances, applications, and comparison of thermal (pasteurization, sterilization, and aseptic packaging) against non-thermal (ultrasounds, UV radiation, ozonation, high hydrostatic pressure) technologies in food processing. Applied Sciences, 12(4), 2202.
  • [6] Kalem, I. K., Bhat, Z. F., Kumar, S., & Desai, A. (2017). Terminalia arjuna: A novel natural preservative for improved lipid oxidative stability and storage quality of muscle foods. Food Science and Human Wellness, 6(4), 167-175.
  • [7] Yuan, H., Ma, Q., Ye, L., & Piao, G. (2016). The traditional medicine and modern medicine from natural products. Molecules, 21(5), 559.
  • [8] Benabderrahim, M. A., Yahia, Y., Bettaieb, I., Elfalleh, W., & Nagaz, K. (2019). Antioxidant activity and phenolic profile of a collection of medicinal plants from Tunisian arid and Saharan regions. Industrial Crops and Products, 138, 111427.
  • [9] Pammi, S. S., Suresh, B., & Giri, A. (2023). Antioxidant potential of medicinal plants. Journal of Crop Science and Biotechnology, 26(1), 13-26.
  • [10] El-Maati, M. F. A., Mahgoub, S. A., Labib, S. M., Al-Gaby, A. M., & Ramadan, M. F. (2016). Phenolic extracts of clove (Syzygium aromaticum) with novel antioxidant and antibacterial activities. European Journal of Integrative Medicine, 8(4), 494-504.
  • [11] Ozogul, Y., Boğa, E. K., Akyol, I., Durmus, M., Ucar, Y., Regenstein, J. M., & Köşker, A. R. (2020). Antimicrobial activity of thyme essential oil nanoemulsions on spoilage bacteria of fish and food-borne pathogens. Food Bioscience, 36, 100635.
  • [12] Mutlu‐Ingok, A., Catalkaya, G., Capanoglu, E., & Karbancioglu‐Guler, F. (2021). Antioxidant and antimicrobial activities of fennel, ginger, oregano and thyme essential oils. Food Frontiers, 2(4), 508-518.
  • [13] Jovanović, A. A., Djordjević, V. B., Petrović, P. M., Pljevljakušić, D. S., Zdunić, G. M., Šavikin, K. P., & Bugarski, B. M. (2021). The influence of different extraction conditions on polyphenol content, antioxidant and antimicrobial activities of wild thyme. Journal of Applied Research on Medicinal and Aromatic Plants, 25, 100328.
  • [14] Akhtar, S., Waseem, M., Ahmad, N., Ismail, T., Ahmad, Z., Manzoor, M. F., & Siddeeg, A. (2019). Polyphenol-rich extracts of traditional culinary spices and herbs and their antibacterial activity in minced beef. Journal of Food Quality, 2019, 1-9.
  • [15] Ökmen, G., Arslan, K., Tekin, R., Çamur, İ. & Gorda, S. (2021). Antimicrobial and Antioxidant Activities of Different Spice Extracts. Avrupa Bilim ve Teknoloji Dergisi, Ejosat 2021 Ocak, 421-429. DOI: 10.31590/ejosat.848958
  • [16] Rahman, M. H., Asaduzzaman, M., & Kabir, M. S. (2021). Determination of antimicrobial activity of traditional spices extracts against clinical isolates in Dhaka city. Stamford Journal of Microbiology, 11(1), 17-19.
  • [17] Latti, P., Ramanarayanan, S., & Prashant, G. M. (2019). Antifungal efficacy of spice extracts against Candida albicans: An in vitro study. Indian Journal of Community Medicine: Official Publication of Indian Association of Preventive & Social Medicine, 44(Suppl 1), S77.
  • [18] Długosz, O., Ochnik, M., Sochocka, M., Franz, D., Orzechowska, B., Anna, C. K., ... & Banach, M. (2022). Antimicrobial and antiviral activity of selenium sulphide nanoparticles synthesised in extracts from spices in natural deep eutectic solvents (NDES). Sustainable Materials and Technologies, 32, e00433.
  • [19] Sasikumar, J. M., Erba, O., & Egigu, M. C. (2020). In vitro antioxidant activity and polyphenolic content of commonly used spices from Ethiopia. Heliyon, 6(9), e05027.
  • [20] Muştu, Ç. (2021). Safranın (Crocus sativus L.) özellikleri, tarihçesi ve gıdalarda kullanımı üzerine bir araştırma. Food and Health, 7(4), 300-310.
  • [21] Cortés-Rojas, D. F., de Souza, C. R. F., & Oliveira, W. P. (2014). Clove (Syzygium aromaticum): a precious spice. Asian Pacific journal of tropical biomedicine, 4(2), 90-96.
  • [22] Okmen, G., Mammadhkanli, M., & Arslan, K. (2022). The Antibacterial Activities of Lavandula angustifolia L., Mentha piperita L., and Ribes nigrum L. against Oral Bacteria, and Their Antioxidant Activities. Turkish Journal of Agriculture-Food Science and Technology, 10(8), 1552-1557.
  • [24] Bauer, A. W. (1966). Antibiotic susceptibility testing by a standardized single diffusion method. Am. J. Clin. Pathol., 45, 493-496.
  • [25] Okmen, G., Tekin, R., Camur, I., Arslan, K., & Eroglu, B. (2019). Determination of Biological Activities of Cardopatium corymbosum L. against Food Pathogens. Turkish Journal of Agriculture-Food Science and Technology, 7(sp1), 167-172.
  • [26] Ökmen, G., Mammadhkanlı, M., & Vurkun, M. (2018). The antibacterial activities of Syzygium aromaticum (L.) Merr. & Perry against oral bacteria and its antioxidant and antimutagenic activities. International Journal of Pharmaceutical Sciences and Research (IJPSR); Vol. 9(11): 4634-4641.
  • [27] Brand-Williams, W., Cuvelier, M.E., Berset, C. (1995). Use of a free radical method to evaluate antioxidant activity. Food Sci. Technology, 28; 25-30.
  • [28] Re R, Pellegrini N, Proteggente A, Pannala A, Yang M, Rice-Evans C, Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic. Biol. Medical 1999; 26; 1231–1237.
  • [29] Orhan, D. D., Orhan, N., Ozcelik, B., & Ergun, F. (2009). Biological activities of Vitis vinifera L. leaves. Turk J Biol, 33(1), 341-8.
  • [30] Mostaqim, S., Saha, S. K., Hani, U., Paul, S. K., Sharmin, M., Basak, S., Begum, S. A., Salma, U., & Shahabuddin, M. S. (2019). Antibacterial Activities of Clove (Syzygium aromaticum) Extracts Against Three Food Borne Pathogens: Staphylococcus aureus, Escherichia coli and Pseudomonas aeruginosa. Mymensingh medical journal : MMJ, 28(4), 779–791.
  • [31] Pandey, A., & Singh, P. (2011). Antibacterial activity of Syzygium aromaticum (clove) with metal ion effect against food borne pathogens. Asian J Plant Sci Res, 1(2), 69-80.
  • [32] Mostafa, A. A., Al-Askar, A. A., Almaary, K. S., Dawoud, T. M., Sholkamy, E. N., & Bakri, M. M. (2018). Antimicrobial activity of some plant extracts against bacterial strains causing food poisoning diseases. Saudi journal of biological sciences, 25(2), 361-366.
  • [33] Wang, Q. I. N., Ou, Z., Lei, H., Zeng, X., Ying, Y. U. E., & Bai, W. (2012). Antimicrobial activities of a new formula of spice aqueous extracts against foodborne bacteria. Journal of food processing and preservation, 36(4), 374-381.
  • [34] Banik, A., Abony, M., Zerin, T., & Datta, S. (2018). Antibacterial activity of Allium sativum, Syzygium aromaticum, and Cinnamomum zeylanicum against food borne pathogens in vitro. IOSR Journal of Pharmacy and Biological Sciences, 13, 68-73.
  • [35] Shahbazi, Y. (2019). Antioxidant, antibacterial, and antifungal properties of nanoemulsion of clove essential oil. Nanomedicine Research Journal, 4(4), 204-208.
  • [36] Hoque, M. M., Inatsu, M., Juneja, V., & Kawamoto, S. (2008). Antimicrobial activity of clove and cinnamon extracts against food borne pathogens and spoilage bacteria and inactivation of Listeria monocytogenes in ground chicken meat with their essential oils. Report of National Food Research Institute, 72, 9-21.
  • [37] Ishaq, A., Syed, Q. A., Khan, M. I., & Zia, M. A. (2019). Characterising and optimising antioxidant and antimicrobial properties of clove extracts against food-borne pathogenic bacteria. International Food Research Journal, 26(4), 1165-1172.
  • [38] Shukla, V., Mendiratta, S., Zende, R., & Badhe, S. (2022). Evaluation of the in-vitro antimicrobial activity of clove and oregano essential oils against foodborne microbes and its comparison with antibiotics. The Pharma Innovation Journal, 11, 732-8.
  • [39] Saeed, M., Nadeem, M., Khan, M. R., Shabbir, M. A., Shehzad, A., & Amir, R. M. (2013). Antimicrobial activity of Syzygium aromaticum extracts against food spoilage bacteria. African Journal of Microbiology Research, 7(41), 4848-4856.
  • [40] Yassin, M. T., Al-Askar, A. A., Mostafa, A. A. F., & El-Sheikh, M. A. (2020). Bioactivity of Syzygium aromaticum (L.) Merr. & LM Perry extracts as potential antimicrobial and anticancer agents. Journal of King Saud University-Science, 32(8), 3273-3278.
  • [41] Witkowska, A. M., Hickey, D. K., Alonso-Gomez, M., & Wilkinson, M. (2013). Evaluation of antimicrobial activities of commercial herb and spice extracts against selected food-borne bacteria. Journal of Food Research, 2(4), 37.
  • [42] Mashkor, I. M. A. A. (2015). Evaluation of antioxidant activity of clove (Syzygium aromaticum). Int. J. Chem. Sci, 13(1), 22-30.
  • [43] Baghshahi, H., Riasi, A., Mahdavi, A. H., & Shirazi, A. (2014). Antioxidant effects of clove bud (Syzygium aromaticum) extract used with different extenders on ram spermatozoa during cryopreservation. Cryobiology, 69(3), 482-487.
  • [44] Atawodi, S. E., Atawodi, J. C., Pfundstein, B., Spiegelhalder, B., Bartsch, H., & Owen, R. (2011). Assessment of the polyphenol components and in vitro antioxidant properties of Syzygium aromaticum (L.) Merr. & Perry. Electronic Journal of Environmental, Agricultural & Food Chemistry, 10(3).
  • [45] Hidayati, M. D., Ersam, T., Shimizu, K., & Fatmawati, S. (2017). Antioxidant activity of Syzygium polyanthum extracts. Indonesian Journal of Chemistry, 17(1), 49-53.
  • [46] Kutlu, Z., Dumlu, F., Aydın Berktaş, Ö. & Odabasoglu, F. (2020). Investigation of In Vitro Antioxidant Activity of Glycrrhiza glabra and Syzygium aromaticum Extracts. Eurasian Journal of Biological and Chemical Sciences, 3 (1), 55-58.
  • [47] Turgay, O., & Esen, Y. (2015). Antioxidant, total phenolic and antimicrobial characteristics of some species. Bulgarian Journal of Agricultural Science, 21(3), 498-503.
  • [48] Radha krishnan, K. Babuskin, S., Babu, P. A. S., Sasikala, M., Sabina, K., Archana, G., Sivarajan, M., & Sukumar, M. (2014). Antimicrobial and antioxidant effects of spice extracts on the shelf life extension of raw chicken meat. International journal of food microbiology, 171, 32-40.
There are 47 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Makaleler
Authors

Kutbettin Arslan 0000-0002-7724-7875

Early Pub Date August 24, 2023
Publication Date August 31, 2023
Published in Issue Year 2023 Volume: 16 Issue: 2

Cite

APA Arslan, K. (2023). The Antioxidant, Antimicrobial, and Total Phenolic Potential of Clove Extracts for Inhibition of Food Pathogens. Erzincan University Journal of Science and Technology, 16(2), 453-464. https://doi.org/10.18185/erzifbed.1279953