Research Article
BibTex RIS Cite
Year 2024, Issue: SUIC, 129 - 141, 31.12.2024
https://doi.org/10.18185/erzifbed.1524216

Abstract

References

  • [1] Nesrin DURSUN, H. G. (2019). Biyohidrojen Üretim Yöntemleri ve Biyohidrojen Üretiminde Biyoreaktörlerin Kullanımı. Journal of the Institute of Science and Technology, 66-75. doi:10.21597/jist.418445 [2] Mengdi Ji, J. W. (2021). Review and comparison of various hydrogen production methods based on costs and life cycle impact assessment indicators. International Journal of Hydrogen Energy, 46(78), 38612-38635. doi:10.1016/j.ijhydene.2021.09.142
  • [3] Hamedani Rajabi Sara, B. E. (2016). Techno-economic Analysis of Hydrogen Production Using Biomass Gasification -A Small Scale Power Plant Study. Energy Procedia, 101, 806-813. doi:10.1016/j.egypro.2016.11.102
  • [4] Hiroshige Matsumoto, S. O. (2007). Hydrogen separation from syngas using high- temperature proton conductors. Ionics, 13, 93-99. doi:10.1007/s11581-007-0080-4
  • [5] Furat Dawood, M. A. (2020). Hydrogen production for energy: An overview. International Journal of Hydrogen Energy, 45(7), 3847-3869. doi:10.1016/j.ijhydene.2019.12.059
  • [6] Minli Yu, K. W. (2021). Insights into low-carbon hydrogen production methods: Green, blue and aqua hydrogen. International Journal of Hydrogen Energy, 46(41), 21261-21273. doi:10.1016/j.ijhydene.2021.04.016
  • [7] S. Shiva Kumar, H. L. (2022). An overview of water electrolysis technologies for green hydrogen production. Energy Reports, 8, 13793-13813. doi:10.1016/j.egyr.2022.10.127
  • [8] IEA. (2019). The Future of Hydrogen. Retrieved June 14, 2023, from IEA: https://www.iea.org/reports/the-future-of-hydrogen
  • [9] Meryem Gizem Sürer, H. T. (2018). State of art of hydrogen usage as a fuel on aviation. European Mechanical Science, 20-30. doi:10.26701/ems.364286
  • [10] Prakash Parthasarathy, K. S. (2014). Hydrogen production from steam gasification of biomass: Influence of process parameters on hydrogen yield – A review. Renewable Energy, 66, 570-579. doi:10.1016/j.renene.2013.12.025
  • [11] M.Balat. (2008). Mechanisms of Thermochemical Biomass Conversion Processes. Part 1: Reactions of Pyrolysis. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 30(7), 620–635. doi:10.1080/15567030600817258
  • [12] Basu, P. (2013). Biomass Gasification, Pyrolysis and Torrefaction, Practical Design and Theory. Elsevier. doi:10.1016/C2011-0-07564-6
  • [13] Shen, Y. (2019). Fractionation of biomass and plastic wastes to value-added products via stepwise pyrolysis: a state-of-art review. Reviews in Chemical Engineering, 17(5), 643-661. doi:10.1515/revce-2019-0046
  • [14] Muhammad Amin, A. S. (2023). Issues and challenges in hydrogen separation technologies. Energy Reports, 9, 894-911. doi:10.1016/j.egyr.2022.12.014
  • [15] Jeongdong Kim, J. P. (2021). Process Integration of an Autothermal Reforming Hydrogen Production System with Cryogenic Air Separation and Carbon Dioxide Capture Using Liquefied Natural Gas Cold Energy. Industrial & Engineering Chemistry Research, 60(19), 7257-7274. doi:10.1021/acs.iecr.0c06265
  • [16] Margot A. Llosa Tanco, J. A. (2021). Hydrogen permeation studies of composite supported alumina-carbon molecular sieves membranes: Separation of diluted hydrogen from mixtures with methane. International Journal of Hydrogen Energy, 46(37), 19758-19767. doi:10.1016/j.ijhydene.2020.05.088
  • [17] D. Dunikov, V. B.-Y.-Y.-Y. (2016). Biohydrogen purification using metal hydride technologies. International Journal of Hydrogen Energy, 41(46), 21787-21794. doi:10.1016/j.ijhydene.2016.08.190
  • [18] Shohei Kuroda, T. N. (2018). Hydroxyl aluminium silicate clay for biohydrogen purification by pressure swing adsorption: Physical properties, adsorption isotherm, multicomponent breakthrough curve modelling, and cycle simulation. International Journal of Hydrogen Energy, 43(34), 16573-16588. doi:10.1016/j.ijhydene.2018.07.065
  • [19] Yorick Ligen, H. V. (2020). Energy efficient hydrogen drying and purification for fuel cell vehicles. International Journal of Hydrogen Energy, 45(18), 10639-10647. doi:10.1016/j.ijhydene.2020.02.035
  • [20] Geo Jong Kim, J. H. (2020). Study on the role of Pt and Pd in Pt–Pd/TiO2 bimetallic catalyst for H2 oxidation at room temperature. International Journal of Hydrogen Energy, 45(35), 17276-17286. doi:10.1016/j.ijhydene.2020.03.062
  • [21] By Gennady S. Burkhanov, N. B. (2011). Palladium-Based Alloy Membranes for Separation of High Purity Hydrogen from Hydrogen-Containing Gas Mixtures. Platinum Metals Review, 55(1), 3 - 12. doi:10.1595/147106711X540346
  • [22] A. López, I. d. (2010). Pyrolysis of municipal plastic wastes: Influence of raw material composition. Waste Management, 30(4), 620-627. doi:10.1016/j.wasman.2009.10.014 [23] Daniel J. Nowakowski, C. R. (2008). Phosphorus catalysis in the pyrolysis behaviour of biomass. Journal of Analytical and Applied Pyrolysis, 83(2), 197-204. doi:10.1016/j.jaap.2008.08.003
  • [24] Cristian Torri, I. G. (2009). Analytical study on the pyrolytic behaviour of cellulose in the presence of MCM-41 mesoporous materials. Journal of Analytical and Applied Pyrolysis, 85(1-2), 192-196. doi:10.1016/j.jaap.2008.11.024
  • [25] Enara Fernandez, L. S. (2022). Role of temperature in the biomass steam pyrolysis in a conical spouted bed reactor. Energy, 238(Part C), 122053. doi:10.1016/j.energy.2021.122053
  • [26] Om Prakash Bamboriya, L. S. (2019). A review on mechanism and factors affecting pyrolysis of biomass. International Journal of Research in Advent Technology, 7(3).
  • [27] Ming Cheng, G. Z.-l.-q.-y. (2020). A review of flexible force sensors for human health monitoring. Journal of Advanced Research, 26, 53-68. doi:10.1016/j.jare.2020.07.001
  • [28] Hamna Siddiqui, U. A. (2024). Comprehensive review of carbon materials as counter electrodes in dye-sensitized solar cells: Efficiency assessment and deposition methods. Materials Science in Semiconductor Processing, 172, 108074. doi:10.1016/j.mssp.2023.108074
  • [29] Shaohua Jiang, L. J. (2019). Chapter 8 - Polymer-Based Nanocomposites with High Dielectric Permittivity. Polymer-Based Multifunctional Nanocomposites and Their Applications, 201-243. doi:10.1016/B978-0-12-815067-2.00008-1

Hydrogen Production via Waste Pyrolysis: A Review of A Study

Year 2024, Issue: SUIC, 129 - 141, 31.12.2024
https://doi.org/10.18185/erzifbed.1524216

Abstract

Hydrogen has great potential for future energy prospects, especially in the potential low-carbon energy system, known as hydrogen economy. It has the highest energy content among all existing fuels [1]. Additionally, as an efficient and clean energy carrier, with only water being released as a byproduct in its conversion into energy. While hydrogen can be derived from various technologies, including both non-renewable (such as fossil fuels) and renewable sources (like biomass) [2], the predominant method still involves fossil fuels, with limited renewable applications due to technological and economic challenges [3]. This study presents a patented model designed by Environmental Power International Ltd (EPi R&D, UK) to produce hydrogen-rich gas from waste while minimising carbon emissions. Model integrates three main sub-systems: High Temperature Pyrolyser, Gas Refinery Unit and Hydrogen Conversion Unit. EPi pyrolysis unit converts the feedstock into syngas and carbon char, and then syngas is refined into methane-rich gas, and ultimately produces high-purity hydrogen and carbon black via thermal plasma electrolysis. Lab scale trials conducted on waste mixtures (Solid Recovered Fuel (SRF) and waste plastic) demonstrated that the model's capability to convert waste into hydrogen with purity exceeding 90%. The design provides great potential for Carbon Capture through its by-products including solid Carbon Black and solid Carbon Char. Carbon Life Cycle Assessment demonstrates that the system leads to net negative emissions. This integrated pyrolysis solution presents a promising avenue for sustainable hydrogen production from waste.

Ethical Statement

There are no ethical issues regarding the publication of this study.

References

  • [1] Nesrin DURSUN, H. G. (2019). Biyohidrojen Üretim Yöntemleri ve Biyohidrojen Üretiminde Biyoreaktörlerin Kullanımı. Journal of the Institute of Science and Technology, 66-75. doi:10.21597/jist.418445 [2] Mengdi Ji, J. W. (2021). Review and comparison of various hydrogen production methods based on costs and life cycle impact assessment indicators. International Journal of Hydrogen Energy, 46(78), 38612-38635. doi:10.1016/j.ijhydene.2021.09.142
  • [3] Hamedani Rajabi Sara, B. E. (2016). Techno-economic Analysis of Hydrogen Production Using Biomass Gasification -A Small Scale Power Plant Study. Energy Procedia, 101, 806-813. doi:10.1016/j.egypro.2016.11.102
  • [4] Hiroshige Matsumoto, S. O. (2007). Hydrogen separation from syngas using high- temperature proton conductors. Ionics, 13, 93-99. doi:10.1007/s11581-007-0080-4
  • [5] Furat Dawood, M. A. (2020). Hydrogen production for energy: An overview. International Journal of Hydrogen Energy, 45(7), 3847-3869. doi:10.1016/j.ijhydene.2019.12.059
  • [6] Minli Yu, K. W. (2021). Insights into low-carbon hydrogen production methods: Green, blue and aqua hydrogen. International Journal of Hydrogen Energy, 46(41), 21261-21273. doi:10.1016/j.ijhydene.2021.04.016
  • [7] S. Shiva Kumar, H. L. (2022). An overview of water electrolysis technologies for green hydrogen production. Energy Reports, 8, 13793-13813. doi:10.1016/j.egyr.2022.10.127
  • [8] IEA. (2019). The Future of Hydrogen. Retrieved June 14, 2023, from IEA: https://www.iea.org/reports/the-future-of-hydrogen
  • [9] Meryem Gizem Sürer, H. T. (2018). State of art of hydrogen usage as a fuel on aviation. European Mechanical Science, 20-30. doi:10.26701/ems.364286
  • [10] Prakash Parthasarathy, K. S. (2014). Hydrogen production from steam gasification of biomass: Influence of process parameters on hydrogen yield – A review. Renewable Energy, 66, 570-579. doi:10.1016/j.renene.2013.12.025
  • [11] M.Balat. (2008). Mechanisms of Thermochemical Biomass Conversion Processes. Part 1: Reactions of Pyrolysis. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 30(7), 620–635. doi:10.1080/15567030600817258
  • [12] Basu, P. (2013). Biomass Gasification, Pyrolysis and Torrefaction, Practical Design and Theory. Elsevier. doi:10.1016/C2011-0-07564-6
  • [13] Shen, Y. (2019). Fractionation of biomass and plastic wastes to value-added products via stepwise pyrolysis: a state-of-art review. Reviews in Chemical Engineering, 17(5), 643-661. doi:10.1515/revce-2019-0046
  • [14] Muhammad Amin, A. S. (2023). Issues and challenges in hydrogen separation technologies. Energy Reports, 9, 894-911. doi:10.1016/j.egyr.2022.12.014
  • [15] Jeongdong Kim, J. P. (2021). Process Integration of an Autothermal Reforming Hydrogen Production System with Cryogenic Air Separation and Carbon Dioxide Capture Using Liquefied Natural Gas Cold Energy. Industrial & Engineering Chemistry Research, 60(19), 7257-7274. doi:10.1021/acs.iecr.0c06265
  • [16] Margot A. Llosa Tanco, J. A. (2021). Hydrogen permeation studies of composite supported alumina-carbon molecular sieves membranes: Separation of diluted hydrogen from mixtures with methane. International Journal of Hydrogen Energy, 46(37), 19758-19767. doi:10.1016/j.ijhydene.2020.05.088
  • [17] D. Dunikov, V. B.-Y.-Y.-Y. (2016). Biohydrogen purification using metal hydride technologies. International Journal of Hydrogen Energy, 41(46), 21787-21794. doi:10.1016/j.ijhydene.2016.08.190
  • [18] Shohei Kuroda, T. N. (2018). Hydroxyl aluminium silicate clay for biohydrogen purification by pressure swing adsorption: Physical properties, adsorption isotherm, multicomponent breakthrough curve modelling, and cycle simulation. International Journal of Hydrogen Energy, 43(34), 16573-16588. doi:10.1016/j.ijhydene.2018.07.065
  • [19] Yorick Ligen, H. V. (2020). Energy efficient hydrogen drying and purification for fuel cell vehicles. International Journal of Hydrogen Energy, 45(18), 10639-10647. doi:10.1016/j.ijhydene.2020.02.035
  • [20] Geo Jong Kim, J. H. (2020). Study on the role of Pt and Pd in Pt–Pd/TiO2 bimetallic catalyst for H2 oxidation at room temperature. International Journal of Hydrogen Energy, 45(35), 17276-17286. doi:10.1016/j.ijhydene.2020.03.062
  • [21] By Gennady S. Burkhanov, N. B. (2011). Palladium-Based Alloy Membranes for Separation of High Purity Hydrogen from Hydrogen-Containing Gas Mixtures. Platinum Metals Review, 55(1), 3 - 12. doi:10.1595/147106711X540346
  • [22] A. López, I. d. (2010). Pyrolysis of municipal plastic wastes: Influence of raw material composition. Waste Management, 30(4), 620-627. doi:10.1016/j.wasman.2009.10.014 [23] Daniel J. Nowakowski, C. R. (2008). Phosphorus catalysis in the pyrolysis behaviour of biomass. Journal of Analytical and Applied Pyrolysis, 83(2), 197-204. doi:10.1016/j.jaap.2008.08.003
  • [24] Cristian Torri, I. G. (2009). Analytical study on the pyrolytic behaviour of cellulose in the presence of MCM-41 mesoporous materials. Journal of Analytical and Applied Pyrolysis, 85(1-2), 192-196. doi:10.1016/j.jaap.2008.11.024
  • [25] Enara Fernandez, L. S. (2022). Role of temperature in the biomass steam pyrolysis in a conical spouted bed reactor. Energy, 238(Part C), 122053. doi:10.1016/j.energy.2021.122053
  • [26] Om Prakash Bamboriya, L. S. (2019). A review on mechanism and factors affecting pyrolysis of biomass. International Journal of Research in Advent Technology, 7(3).
  • [27] Ming Cheng, G. Z.-l.-q.-y. (2020). A review of flexible force sensors for human health monitoring. Journal of Advanced Research, 26, 53-68. doi:10.1016/j.jare.2020.07.001
  • [28] Hamna Siddiqui, U. A. (2024). Comprehensive review of carbon materials as counter electrodes in dye-sensitized solar cells: Efficiency assessment and deposition methods. Materials Science in Semiconductor Processing, 172, 108074. doi:10.1016/j.mssp.2023.108074
  • [29] Shaohua Jiang, L. J. (2019). Chapter 8 - Polymer-Based Nanocomposites with High Dielectric Permittivity. Polymer-Based Multifunctional Nanocomposites and Their Applications, 201-243. doi:10.1016/B978-0-12-815067-2.00008-1
There are 27 citations in total.

Details

Primary Language English
Subjects Pharmaceutical Sciences
Journal Section Makaleler
Authors

Sinem Kurt Yuzbasioglu 0000-0002-5852-3926

Hayati Olgun 0000-0002-1777-2010

Publication Date December 31, 2024
Submission Date July 29, 2024
Acceptance Date December 29, 2024
Published in Issue Year 2024 Issue: SUIC

Cite

APA Kurt Yuzbasioglu, S., & Olgun, H. (2024). Hydrogen Production via Waste Pyrolysis: A Review of A Study. Erzincan University Journal of Science and Technology(SUIC), 129-141. https://doi.org/10.18185/erzifbed.1524216