Investigation of Durability Performance of High Plasticity Silty Soil Improved with Alkali Activated Fly Ash and Polypropylene Fiber
Year 2025,
Volume: 18 Issue: 1, 42 - 58, 28.03.2025
Hakan Alper Kamiloğlu
,
Kutluhan Kurucu
,
Muhammet Oğuz Durak
Abstract
This study investigates the effects of parameters such as activator content, the type of fiber reinforcement, and fiber content on the durability characteristics. While conventional methods often focus on wetting-drying or freezing-thawing cycles for durability evaluation, the study emphasizes the importance of soaking tests, simulating field conditions more accurately. In soil improvement applications, the brittleness of the material increases with the use of both conventional and alkali-activated binders. Fiber reinforcement is a common practice to address this issue and enhance ductility. The study reviews various types of fibers and their roles in improving different aspects of soil properties. Notably, the use of hybrid fibers, combining different types and lengths, is explored for its potential to improve the durability of soil layers. The experimental part of the study investigates the behavior of high plasticity silty soil stabilized with fiber reinforcement and alkali-activated fly ash against soaking effects. The study considers the effects of the Na2SiO3/NaOH ratio, 3 mm and 12 mm length fiber content, and combinations of these fiber lengths on deterioration, the unconfined compressive strength (UCS), strength reduction of soaked samples. The durability performance of the samples is evaluated through various soaking periods. Results indicate that the use of hybrid fibers, combining different lengths, shows promise in improving the durability properties of stabilized soil layers.
Ethical Statement
There are no ethical issues regarding the publication of this study
Supporting Institution
This research was supported under Scientific and Technological Research Council of Turkey (TUBITAK)
Project Number
2209A/ 919B012215918
References
- [1] Öksüzer, N., (2023) The effect of calcination on alkali-activated lightweight geopolymers produced with volcanic tuffs. J. Aust. Ceram. Soc. https://doi.org/10.1007/s41779-023-00896-6.
- [2] Guo, R., Wang, J., Bing, L., Tong, D., Ciais, P., Davis. S. J., et al. (2021) Global CO2 uptake by cement from 1930 to 2019. Earth. Syst. Sci. Data 13,1791–805. https://doi.org/10.5194/essd-13-1791-2021.
- [3] Turner, L. K., Collins, F. G., (2013) Carbon dioxide equivalent (CO2-e) emissions: A comparison between geopolymer and OPC cement concrete. Constr Build Mater 43, 125–30.
https://doi.org/10.1016/j.conbuildmat.2013.01.023.
- [4] Çınar, M., Erbaşı, B. (2022). Geoteknik uygulamalarda geopolimerlerin kullanılabilirliğinin incelenmesi, literatür çalışması. Kahramanmaraş Sütçü İmam Üniversitesi Mühendislik Bilimleri Dergisi, 25(4), 774-789. https://doi.org/10.17780/ksujes.1110640
- [5] Lan, T., Meng, Y., Ju, T., Song, M., Chen, Z., Shen, P., et al. (2022) Manufacture of alkali-activated and geopolymer hybrid binder (AGHB) by municipal waste incineration fly ash incorporating aluminosilicate supplementary cementitious materials (ASCM). Chemosphere, 303, 134978. https://doi.org/10.1016/j.chemosphere.2022.134978.
- [6] Hui-Teng, N., Cheng-Yong, H., Yun-Ming, L., Abdullah, M. M. A. B., Pakawanit, P., Bayuaji, R., et al. (2022) Comparison of thermal performance between fly ash geopolymer and fly ash-ladle furnace slag geopolymer. J. Non. Cryst. Solids., 585, 121527. https://doi.org/10.1016/j.jnoncrysol.2022.121527.
- [7] Detphan, S., Chindaprasirt. P., (2009) Preparation of fly ash and rice husk ash geopolymer. Int. J. Miner. Metall. Mater. 16, 720–6. https://doi.org/https://doi.org/10.1016/S1674-4799(10)60019-2.
- [8] Luhar, I., Luhar, S. A., (2022), Comprehensive review on fly ash-based geopolymer. J. Compos. Sci.6 (219). https://doi.org/10.3390/jcs6080219.
- [9] Saif, M.S., El-Hariri, M.O.R., Sarie-Eldin, A.I., Tayeh, B.A., Farag, M.F. (2022) Impact of Ca+ content and curing condition on durability performance of metakaolin-based geopolymer mortars. Case. Stud. Constr. Mater. 16-e00922. https://doi.org/10.1016/j.cscm.2022.e00922.
- [10] Nematollahi, B., Sanjayan, J.(2014), Effect of different superplasticizers and activator combinations on workability and strength of fly ash based geopolymer. Mater. Des. 57, 667–72. https://doi.org/10.1016/j.matdes.2014.01.064.
- [11] Lv, Q., Yu, J., Ji, F., Gu, L., Chen, Y., Shan, X. (2021) Mechanical property and microstructure of fly ash-based geopolymer activated by sodium silicate. KSCE J Civ Eng. 25,1765–77. https://doi.org/10.1007/s12205-021-0025-x.
- [12] Liu, M., Wang, C., Wu, H., Yang, D., Ma, Z. (2022) Reusing recycled powder as eco-friendly binder for sustainable GGBS-based geopolymer considering the effects of recycled powder type and replacement rate. J Clean Prod 364-132656. https://doi.org/10.1016/j.jclepro.2022.132656.
- [13] Tahwia, A. M., Abd Ellatief, M., Heneigel, A. M., Abd Elrahman, M., Cha (2022) racteristics of eco-friendly ultra-high-performance geopolymer concrete incorporating waste materials. Ceram. Int. 48, 19662–74. https://doi.org/10.1016/j.ceramint.2022.03.103.
- [14] Leong, H. Y., Ong, D. E. L., Sanjayan, J. G., Nazari, A. (2016), The effect of different Na2O and K2O ratios of alkali activator on compressive strength of fly ash based-geopolymer. Constr. Build. Mater. 106, 500–11. https://doi.org/10.1016/j.conbuildmat.2015.12.141.
- [15] Lashkari, S., Yazdipanah, F., Shahri, M., Sarker, P. (2021) Mechanical and durability assessment of cement-based and alkali-activated coating mortars in an aggressive marine environment. SN Appl Sci 3(618). https://doi.org/10.1007/s42452-021-04602-8.
- [16] Disfani, M., Mohammadinia. A., Arulrajah, A., Horpibulsuk, S.(2021) Lightly stabilized loose sands with alkali-activated fly ash in deep mixing applications. Int J Geomech 21. https://doi.org/https://doi.org/10.1061/(ASCE)GM.1943-5622.0001958.
- [17] Shariati, M., Shariati, A., Trung, N. T., Shoaei, P., Ameri, F., Bahrami, N., et al. (2020) Alkali-activated slag (AAS) paste: Correlation between durability and microstructural characteristics. Constr. Build. Mater. 267-120886. https://doi.org/10.1016/j.conbuildmat.2020.120886.
- [18] Odeh, N. A., Al-Rkaby, A. H. J. (2022), Strength, durability, and microstructures characterization of sustainable geopolymer improved clayey soil. Case Stud Constr Mater 16:e00988. https://doi.org/10.1016/j.cscm.2022.e00988.
- [19] Baldovino, J. J. A., Izzo, R. L. S., Rose, J. L., Domingos, M. D. I.(2020) Strength, durability, and microstructure of geopolymers based on recycled-glass powder waste and dolomitic lime for soil stabilization. Constr Build Mater 271-121874. https://doi.org/10.1016/j.conbuildmat.2020.121874.
- [20] Yılmaz, F., Demir, E. (2019). Freezing-thawing and wetting-drying behavior of clayey soil stabilized with lime and silica fume. Erzincan University Journal of Science and Technology, 12(3), 1724-1732. https://doi.org/10.18185/erzifbed.654104
- [21] Bhavita-Chowdary, V., Ramanamurty, V., Pillai, R. J. (2021) Experimental evaluation of strength and durability characteristics of geopolymer stabilised soft soil for deep mixing applications. Innov Infrastruct Solut 6(40). https://doi.org/10.1007/s41062-020-00407-7.
- [22] Wang, S., Xue, Q., Ma, W., Zhao, K., Wu, Z. (2021) Experimental study on mechanical properties of fiber-reinforced and geopolymer-stabilized clay soil. Constr Build Mater. 272-121914. https://doi.org/10.1016/j.conbuildmat.2020.121914.
- [23] Ahmed, A., Issa, U. H. (2014) Stability of soft clay soil stabilised with recycled gypsum in a wet environment. Soils. Found. 54, 405–16. https://doi.org/10.1016/j.sandf.2014.04.009.
- [24] Yilmaz, F., Kuvat, A., Kamiloğlu, H. A. (2023) Optimizing and investigating durability performance of sandy soils stabilized with alkali activated waste tuff-fly ash mixtures. Sādhanā 48, 185. https://doi.org/10.1007/s12046-023-02250-9.
- [25] Yazıcı, M. F., Keskin, N. (2021). Zeminlerin Doğal ve sentetik lifler ıle güçlendirilmesi üzerine bir derleme çalışması. Erzincan University Journal of Science and Technology, 14(2), 631-663. https://doi.org/10.18185/erzifbed.874339
- [26] Topçuoğlu, Y. A., Gürocak, Z. (2024). The effect of basalt fiber reinforcement at different ratios on the unconfined compressive strength of kaolin. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, 13(1), 1-1. https://doi.org/10.28948/ngumuh.1352665
- [27] Demiröz, A., Saran, O. (2024). Investigation of the effect of additives on the microstructure of clay. Turkish Journal of Engineering, 8(3), 563-571. https://doi.org/10.31127/tuje.1439113
- [28] Şahbaz, İ., Ünsever, Y. S. (2020). Çimento ve polipropilen lif kullanarak düşük plastisiteli kil zeminlerin iyileştirilmesi. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi, 25(3), 1409-1420. https://doi.org/10.17482/uumfd.803361
- [29] Gürocak, Z., Topçuoğlu, Y. A. (2023). Bazalt fiber kullanımının düşük plastisiteli kilin serbest basınç dayanımı üzerindeki etkisi. Gümüşhane Üniversitesi Fen Bilimleri Dergisi, 13(3), 688-701.
- [30] Boz, A., Sezer, A., Özdemir, T., Hızal, G. E., Azdeniz, Dolmacı, Ö. (2018) Mechanical properties of lime-treated clay reinforced with different types of randomly distributed fibers. Arab J Geosci 11, 122. https://doi.org/10.1007/s12517-018-3458-x.
- [31] Mirzababaei, M., Arulrajah, A., Haque, A., Nimbalkar, S., Mohajerani, A. (2018) Effect of fiber reinforcement on shear strength and void ratio of soft clay. Geosynth Int. 25, 471–80. https://doi.org/10.1680/jgein.18.00023.
- [32] Güllü, H., Khudir, A. (2014) Effect of freeze–thaw cycles on unconfined compressive strength of fine-grained soil treated with jute fiber, steel fiber and lime. Cold. Reg. Sci. Technol. 106–1075, 5–65. https://doi.org/10.1016/j.coldregions.2014.06.008.
- [33] Dhar, S., Hussain, M. (2019) The strength behaviour of lime-stabilised plastic fibre-reinforced clayey soil. Road Mater Pavement Des. 20, 1757–78. https://doi.org/10.1080/14680629.2018.1468803.
- [34] Zhang, H. Z., Fang, Y. (2014) An Experimental study on flexural-tensile property of cement stabilized coal gangue roadbase materials. Appl. Mech. Mater. 638–640, 1536–40. https://doi.org/10.4028/www.scientific.net/AMM.638-640.1536.
- [35] Li, M., Pu, Y., Thomas, V. M., Yoo, C. G., Ozcan, S., Deng, Y., et al. (2020) Recent advancements of plant-based natural fiber–reinforced composites and their applications. Compos Part B Eng 200-108254. https://doi.org/10.1016/j.compositesb.2020.108254.
- [36] Topçuoğlu, Y. A., Gürocak, Z. (2023). Sodyum bentonit kilini güçlendirmede maksimum dayanım için optimum bazalt fiber oranının belirlenmesi. Dicle University Journal of Engineering/Dicle Üniversitesi Mühendislik Dergisi, 14(3). https://doi.org/10.24012/dumf.1346476
- [37] Kumar, R., A., Singh, G., Kumar, T., A. (2020) Comparative study of soil stabilization with glass powder, plastic and e-waste: A review. Mater Today Proc. 32, 771–6. https://doi.org/10.1016/j.matpr.2020.03.570.
- [38] Mobasher, B., Cheng, Y. L. (1996) Effect of interfacial properties on the crack propagation in cementitious composites. Adv Cem Based Mater. 4, 93–105. https://doi.org/10.1016/S1065-7355(96)90078-4.
- [39] Banyhussan, Q. S., Yıldırım, G., Bayraktar, E., Demirhan, S., Şahmaran, M. (2016). Deflection-hardening hybrid fiber reinforced concrete: The effect of aggregate content. Constr Build Mater. 125,41–52. https://doi.org/10.1016/j.conbuildmat.2016.08.020.
- [40] Öksüzer, N., Anil, Ö., Aldemir, A., Şahmaran, M. (2021) Investigation of mechanical properties of high-performance hybrid fiber concretes adding nanomaterials using with coarse aggregate. Structures 33,2893–902. https://doi.org/10.1016/j.istruc.2021.06.044.
- [41] Singh, N. K., Rai, B. (2018) A review of fiber synergy in hybrid fiber reinforced concrete. J Appl Eng Sci. 8, 41–50. https://doi.org/10.2478/jaes-2018-0017.
- [42] Linares-Unamunzaga, A., Pérez-Acebo, H., Rojo, M., Gonzalo-Orden, H. (2019) Flexural strength prediction models for soil–cement from unconfined compressive strength at seven days. Materials (Basel) 12,387. https://doi.org/10.3390/ma12030387.
- [43] Ün, H. (2005) Değişik tip çimentolarla hazırlanan harçların eğilme sonrası basınç dayanımı ile doğrudan basınç dayanımlarının karşılaştırılması. Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen ve Mühendislik Dergisi. 7, 97–109.
- [44] Yazıcı, Ş., Sezer, G. İ. (2016) Effect of different curing conditions on flexural and compressive strength of fly ash mortars. Pamukkale Univ J Eng Sci, 22,396–9. https://doi.org/10.5505/pajes.2015.46547.
- [45] Kamiloğlu, H. A., Kurucu, K., Akbaş, D. (2023) Investigating the effect of polypropylene fiber on mechanical features of a geopolymer-stabilized silty soil. KSCE J Civ Eng 2023. https://doi.org/10.1007/s12205-023-0488-z.
Alkali Aktifleştirilmiş Uçucu Kül ve Polipropilen Elyaf Ile Iyileştirilmiş Yüksek Plastisiteli Siltli Zeminin Durabilite Performansının Incelenmesi
Year 2025,
Volume: 18 Issue: 1, 42 - 58, 28.03.2025
Hakan Alper Kamiloğlu
,
Kutluhan Kurucu
,
Muhammet Oğuz Durak
Abstract
Bu çalışmada aktivatör içeriği, fiber takviye türü ve fiber içeriği gibi parametrelerin durabilite özellikleri üzerindeki etkileri araştırılmaktadır. Geleneksel yöntemler durabilite değerlendirmesi için genellikle ıslatma-kurutma veya donma-çözülme döngülerine odaklanırken, bu çalışma saha koşullarını daha doğru bir şekilde simüle eden ıslatma testlerinin önemini vurgulamaktadır. Zemin iyileştirme uygulamalarında, malzemenin kırılganlığı hem geleneksel hem de alkali ile aktive edilen bağlayıcıların kullanımı ile artmaktadır. Lif takviyesi, bu sorunu çözmek ve sünekliği artırmak için yaygın bir uygulamadır. Bu çalışma, çeşitli lif türlerini ve bunların zemin özelliklerinin farklı yönlerini iyileştirmedeki rollerini incelemektedir. Özellikle, farklı tip ve uzunlukları bir araya getiren hibrit liflerin kullanımı, zemin tabakalarının durabilite özelliklerini artırma potansiyeli açısından araştırılmıştır. Çalışmanın deneysel kısmı, lif takviyesi ve alkali ile aktive edilmiş uçucu kül ile stabilize edilmiş yüksek plastisiteli siltli zeminin ıslatma etkilerine karşı davranışını araştırmaktadır. Çalışma, Na2SiO3/NaOH oranının, 3 mm ve 12 mm uzunluğundaki lif içeriğinin ve bu lif uzunluklarının kombinasyonlarının bozulma, serbest basınç dayanımı (UCS) ve ıslatılmış numunelerin dayanım azalması üzerindeki etkilerini ele almaktadır. Numunelerin dayanıklılık performansı çeşitli ıslatma süreleri ile değerlendirilmiştir. Sonuçlar, farklı uzunluklarda karıştırılan hibrit liflerin kullanımının, stabilize edilmiş zeminin durabilite özelliklerini iyileştirmede dikkate değer katkı sunduğu belirlenmiştir.
Project Number
2209A/ 919B012215918
References
- [1] Öksüzer, N., (2023) The effect of calcination on alkali-activated lightweight geopolymers produced with volcanic tuffs. J. Aust. Ceram. Soc. https://doi.org/10.1007/s41779-023-00896-6.
- [2] Guo, R., Wang, J., Bing, L., Tong, D., Ciais, P., Davis. S. J., et al. (2021) Global CO2 uptake by cement from 1930 to 2019. Earth. Syst. Sci. Data 13,1791–805. https://doi.org/10.5194/essd-13-1791-2021.
- [3] Turner, L. K., Collins, F. G., (2013) Carbon dioxide equivalent (CO2-e) emissions: A comparison between geopolymer and OPC cement concrete. Constr Build Mater 43, 125–30.
https://doi.org/10.1016/j.conbuildmat.2013.01.023.
- [4] Çınar, M., Erbaşı, B. (2022). Geoteknik uygulamalarda geopolimerlerin kullanılabilirliğinin incelenmesi, literatür çalışması. Kahramanmaraş Sütçü İmam Üniversitesi Mühendislik Bilimleri Dergisi, 25(4), 774-789. https://doi.org/10.17780/ksujes.1110640
- [5] Lan, T., Meng, Y., Ju, T., Song, M., Chen, Z., Shen, P., et al. (2022) Manufacture of alkali-activated and geopolymer hybrid binder (AGHB) by municipal waste incineration fly ash incorporating aluminosilicate supplementary cementitious materials (ASCM). Chemosphere, 303, 134978. https://doi.org/10.1016/j.chemosphere.2022.134978.
- [6] Hui-Teng, N., Cheng-Yong, H., Yun-Ming, L., Abdullah, M. M. A. B., Pakawanit, P., Bayuaji, R., et al. (2022) Comparison of thermal performance between fly ash geopolymer and fly ash-ladle furnace slag geopolymer. J. Non. Cryst. Solids., 585, 121527. https://doi.org/10.1016/j.jnoncrysol.2022.121527.
- [7] Detphan, S., Chindaprasirt. P., (2009) Preparation of fly ash and rice husk ash geopolymer. Int. J. Miner. Metall. Mater. 16, 720–6. https://doi.org/https://doi.org/10.1016/S1674-4799(10)60019-2.
- [8] Luhar, I., Luhar, S. A., (2022), Comprehensive review on fly ash-based geopolymer. J. Compos. Sci.6 (219). https://doi.org/10.3390/jcs6080219.
- [9] Saif, M.S., El-Hariri, M.O.R., Sarie-Eldin, A.I., Tayeh, B.A., Farag, M.F. (2022) Impact of Ca+ content and curing condition on durability performance of metakaolin-based geopolymer mortars. Case. Stud. Constr. Mater. 16-e00922. https://doi.org/10.1016/j.cscm.2022.e00922.
- [10] Nematollahi, B., Sanjayan, J.(2014), Effect of different superplasticizers and activator combinations on workability and strength of fly ash based geopolymer. Mater. Des. 57, 667–72. https://doi.org/10.1016/j.matdes.2014.01.064.
- [11] Lv, Q., Yu, J., Ji, F., Gu, L., Chen, Y., Shan, X. (2021) Mechanical property and microstructure of fly ash-based geopolymer activated by sodium silicate. KSCE J Civ Eng. 25,1765–77. https://doi.org/10.1007/s12205-021-0025-x.
- [12] Liu, M., Wang, C., Wu, H., Yang, D., Ma, Z. (2022) Reusing recycled powder as eco-friendly binder for sustainable GGBS-based geopolymer considering the effects of recycled powder type and replacement rate. J Clean Prod 364-132656. https://doi.org/10.1016/j.jclepro.2022.132656.
- [13] Tahwia, A. M., Abd Ellatief, M., Heneigel, A. M., Abd Elrahman, M., Cha (2022) racteristics of eco-friendly ultra-high-performance geopolymer concrete incorporating waste materials. Ceram. Int. 48, 19662–74. https://doi.org/10.1016/j.ceramint.2022.03.103.
- [14] Leong, H. Y., Ong, D. E. L., Sanjayan, J. G., Nazari, A. (2016), The effect of different Na2O and K2O ratios of alkali activator on compressive strength of fly ash based-geopolymer. Constr. Build. Mater. 106, 500–11. https://doi.org/10.1016/j.conbuildmat.2015.12.141.
- [15] Lashkari, S., Yazdipanah, F., Shahri, M., Sarker, P. (2021) Mechanical and durability assessment of cement-based and alkali-activated coating mortars in an aggressive marine environment. SN Appl Sci 3(618). https://doi.org/10.1007/s42452-021-04602-8.
- [16] Disfani, M., Mohammadinia. A., Arulrajah, A., Horpibulsuk, S.(2021) Lightly stabilized loose sands with alkali-activated fly ash in deep mixing applications. Int J Geomech 21. https://doi.org/https://doi.org/10.1061/(ASCE)GM.1943-5622.0001958.
- [17] Shariati, M., Shariati, A., Trung, N. T., Shoaei, P., Ameri, F., Bahrami, N., et al. (2020) Alkali-activated slag (AAS) paste: Correlation between durability and microstructural characteristics. Constr. Build. Mater. 267-120886. https://doi.org/10.1016/j.conbuildmat.2020.120886.
- [18] Odeh, N. A., Al-Rkaby, A. H. J. (2022), Strength, durability, and microstructures characterization of sustainable geopolymer improved clayey soil. Case Stud Constr Mater 16:e00988. https://doi.org/10.1016/j.cscm.2022.e00988.
- [19] Baldovino, J. J. A., Izzo, R. L. S., Rose, J. L., Domingos, M. D. I.(2020) Strength, durability, and microstructure of geopolymers based on recycled-glass powder waste and dolomitic lime for soil stabilization. Constr Build Mater 271-121874. https://doi.org/10.1016/j.conbuildmat.2020.121874.
- [20] Yılmaz, F., Demir, E. (2019). Freezing-thawing and wetting-drying behavior of clayey soil stabilized with lime and silica fume. Erzincan University Journal of Science and Technology, 12(3), 1724-1732. https://doi.org/10.18185/erzifbed.654104
- [21] Bhavita-Chowdary, V., Ramanamurty, V., Pillai, R. J. (2021) Experimental evaluation of strength and durability characteristics of geopolymer stabilised soft soil for deep mixing applications. Innov Infrastruct Solut 6(40). https://doi.org/10.1007/s41062-020-00407-7.
- [22] Wang, S., Xue, Q., Ma, W., Zhao, K., Wu, Z. (2021) Experimental study on mechanical properties of fiber-reinforced and geopolymer-stabilized clay soil. Constr Build Mater. 272-121914. https://doi.org/10.1016/j.conbuildmat.2020.121914.
- [23] Ahmed, A., Issa, U. H. (2014) Stability of soft clay soil stabilised with recycled gypsum in a wet environment. Soils. Found. 54, 405–16. https://doi.org/10.1016/j.sandf.2014.04.009.
- [24] Yilmaz, F., Kuvat, A., Kamiloğlu, H. A. (2023) Optimizing and investigating durability performance of sandy soils stabilized with alkali activated waste tuff-fly ash mixtures. Sādhanā 48, 185. https://doi.org/10.1007/s12046-023-02250-9.
- [25] Yazıcı, M. F., Keskin, N. (2021). Zeminlerin Doğal ve sentetik lifler ıle güçlendirilmesi üzerine bir derleme çalışması. Erzincan University Journal of Science and Technology, 14(2), 631-663. https://doi.org/10.18185/erzifbed.874339
- [26] Topçuoğlu, Y. A., Gürocak, Z. (2024). The effect of basalt fiber reinforcement at different ratios on the unconfined compressive strength of kaolin. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, 13(1), 1-1. https://doi.org/10.28948/ngumuh.1352665
- [27] Demiröz, A., Saran, O. (2024). Investigation of the effect of additives on the microstructure of clay. Turkish Journal of Engineering, 8(3), 563-571. https://doi.org/10.31127/tuje.1439113
- [28] Şahbaz, İ., Ünsever, Y. S. (2020). Çimento ve polipropilen lif kullanarak düşük plastisiteli kil zeminlerin iyileştirilmesi. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi, 25(3), 1409-1420. https://doi.org/10.17482/uumfd.803361
- [29] Gürocak, Z., Topçuoğlu, Y. A. (2023). Bazalt fiber kullanımının düşük plastisiteli kilin serbest basınç dayanımı üzerindeki etkisi. Gümüşhane Üniversitesi Fen Bilimleri Dergisi, 13(3), 688-701.
- [30] Boz, A., Sezer, A., Özdemir, T., Hızal, G. E., Azdeniz, Dolmacı, Ö. (2018) Mechanical properties of lime-treated clay reinforced with different types of randomly distributed fibers. Arab J Geosci 11, 122. https://doi.org/10.1007/s12517-018-3458-x.
- [31] Mirzababaei, M., Arulrajah, A., Haque, A., Nimbalkar, S., Mohajerani, A. (2018) Effect of fiber reinforcement on shear strength and void ratio of soft clay. Geosynth Int. 25, 471–80. https://doi.org/10.1680/jgein.18.00023.
- [32] Güllü, H., Khudir, A. (2014) Effect of freeze–thaw cycles on unconfined compressive strength of fine-grained soil treated with jute fiber, steel fiber and lime. Cold. Reg. Sci. Technol. 106–1075, 5–65. https://doi.org/10.1016/j.coldregions.2014.06.008.
- [33] Dhar, S., Hussain, M. (2019) The strength behaviour of lime-stabilised plastic fibre-reinforced clayey soil. Road Mater Pavement Des. 20, 1757–78. https://doi.org/10.1080/14680629.2018.1468803.
- [34] Zhang, H. Z., Fang, Y. (2014) An Experimental study on flexural-tensile property of cement stabilized coal gangue roadbase materials. Appl. Mech. Mater. 638–640, 1536–40. https://doi.org/10.4028/www.scientific.net/AMM.638-640.1536.
- [35] Li, M., Pu, Y., Thomas, V. M., Yoo, C. G., Ozcan, S., Deng, Y., et al. (2020) Recent advancements of plant-based natural fiber–reinforced composites and their applications. Compos Part B Eng 200-108254. https://doi.org/10.1016/j.compositesb.2020.108254.
- [36] Topçuoğlu, Y. A., Gürocak, Z. (2023). Sodyum bentonit kilini güçlendirmede maksimum dayanım için optimum bazalt fiber oranının belirlenmesi. Dicle University Journal of Engineering/Dicle Üniversitesi Mühendislik Dergisi, 14(3). https://doi.org/10.24012/dumf.1346476
- [37] Kumar, R., A., Singh, G., Kumar, T., A. (2020) Comparative study of soil stabilization with glass powder, plastic and e-waste: A review. Mater Today Proc. 32, 771–6. https://doi.org/10.1016/j.matpr.2020.03.570.
- [38] Mobasher, B., Cheng, Y. L. (1996) Effect of interfacial properties on the crack propagation in cementitious composites. Adv Cem Based Mater. 4, 93–105. https://doi.org/10.1016/S1065-7355(96)90078-4.
- [39] Banyhussan, Q. S., Yıldırım, G., Bayraktar, E., Demirhan, S., Şahmaran, M. (2016). Deflection-hardening hybrid fiber reinforced concrete: The effect of aggregate content. Constr Build Mater. 125,41–52. https://doi.org/10.1016/j.conbuildmat.2016.08.020.
- [40] Öksüzer, N., Anil, Ö., Aldemir, A., Şahmaran, M. (2021) Investigation of mechanical properties of high-performance hybrid fiber concretes adding nanomaterials using with coarse aggregate. Structures 33,2893–902. https://doi.org/10.1016/j.istruc.2021.06.044.
- [41] Singh, N. K., Rai, B. (2018) A review of fiber synergy in hybrid fiber reinforced concrete. J Appl Eng Sci. 8, 41–50. https://doi.org/10.2478/jaes-2018-0017.
- [42] Linares-Unamunzaga, A., Pérez-Acebo, H., Rojo, M., Gonzalo-Orden, H. (2019) Flexural strength prediction models for soil–cement from unconfined compressive strength at seven days. Materials (Basel) 12,387. https://doi.org/10.3390/ma12030387.
- [43] Ün, H. (2005) Değişik tip çimentolarla hazırlanan harçların eğilme sonrası basınç dayanımı ile doğrudan basınç dayanımlarının karşılaştırılması. Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen ve Mühendislik Dergisi. 7, 97–109.
- [44] Yazıcı, Ş., Sezer, G. İ. (2016) Effect of different curing conditions on flexural and compressive strength of fly ash mortars. Pamukkale Univ J Eng Sci, 22,396–9. https://doi.org/10.5505/pajes.2015.46547.
- [45] Kamiloğlu, H. A., Kurucu, K., Akbaş, D. (2023) Investigating the effect of polypropylene fiber on mechanical features of a geopolymer-stabilized silty soil. KSCE J Civ Eng 2023. https://doi.org/10.1007/s12205-023-0488-z.