Research Article
BibTex RIS Cite
Year 2025, Volume: 18 Issue: 1, 171 - 188, 28.03.2025
https://doi.org/10.18185/erzifbed.1564095

Abstract

References

  • L. Thomas, J. Sebastian, A. Santhosh, R. Vijay, V.N. Ajukumar, M.T.B.H. Hameed Sultan, M. Mubarak Ali, Physicochemical Modifications on Fibre Reinforced Polymer Composites for Mining Applications, J. Mines, Met. Fuels (2023) 2545–2553. https://doi.org/10.18311/jmmf/2023/36535.
  • [2] R. Phiri, S. Mavinkere Rangappa, S. Siengchin, O.P. Oladijo, H.N. Dhakal, Development of sustainable biopolymer-based composites for lightweight applications from agricultural waste biomass: A review, Adv. Ind. Eng. Polym. Res. 6 (2023) 436–450. https://doi.org/10.1016/j.aiepr.2023.04.004.
  • [3] Y. Karaduman, Viscoelastic properties of natural fiber reinforced cork based sandwich composites, Pamukkale Univ. J. Eng. Sci. 24 (2018) 1257–1261. https://doi.org/10.5505/pajes.2018.56492.
  • [4] M.N. Kolak, Polimer esaslı kenevir, ketencik ve perlit içeren kompozitlerin fiziko-mekanik ve termal özelliklerinin incelenmesi, Atatürk Üniversitesi, 2023.
  • [5] S.H. Kamarudin, M.S. Mohd Basri, M. Rayung, F. Abu, S. Ahmad, M.N. Norizan, S. Osman, N. Sarifuddin, M.S. Desa, U.H. Abdullah, I.S. Mohamed Amin Tawakkal, L.C. Abdullah, A Review on Natural Fiber Reinforced Polymer Composites (NFRPC) for Sustainable Industrial Applications, Polymers (Basel). 14 (2022). https://doi.org/10.3390/polym14173698.
  • [6] S. Rajaram, T. Subbiah, F.S. Arockiasamy, J. Iyyadurai, Transforming Agricultural Waste into Sustainable Composite Materials: Mechanical Properties of Tamarindus Fruit Fiber (TFF)-Reinforced Polylactic Acid Composites, in: Int. Conf. Process. Perform. Mater. (ICPPM 2023), MDPI, Basel Switzerland, 2024: p. 32. https://doi.org/10.3390/engproc2024061032.
  • [7] M.T. Ferrandez-García, C.E. Ferrandez-Garcia, T. Garcia-Ortuño, A. Ferrandez-Garcia, M. Ferrandez-Villena, Study of waste jute fibre panels (Corchorus capsularis L.) agglomerated with portland cement and starch, Polymers (Basel). 12 (2020) 599. https://doi.org/10.3390/polym12030599.
  • [8] N. Stevulova, J. Cigasova, I. Schwarzova, A. Sicakova, J. Junak, Sustainable bio-aggregate-based composites containing hemp hurds and alternative binder, Buildings 8 (2018) 25. https://doi.org/10.3390/buildings8020025.
  • [9] V. Barbieri, M. Lassinantti Gualtieri, T. Manfredini, C. Siligardi, Lightweight concretes based on wheat husk and hemp hurd as bio-aggregates and modified magnesium oxysulfate binder: Microstructure and technological performances, Constr. Build. Mater. 284 (2021) 122751. https://doi.org/10.1016/j.conbuildmat.2021.122751.
  • [10] M. Charai, H. Sghiouri, A. Mezrhab, M. Karkri, Thermal insulation potential of non-industrial hemp (Moroccan cannabis sativa L.) fibers for green plaster-based building materials, J. Clean. Prod. 292 (2021) 126064. https://doi.org/10.1016/j.jclepro.2021.126064.
  • [11] P. Brzyski, M. Gładecki, M. Rumińska, K. Pietrak, M. Kubiś, P. Łapka, Influence of hemp shives size on hygro-thermal and mechanical properties of a hemp-lime composite, Materials (Basel). 13 (2020) 5383. https://doi.org/10.3390/ma13235383.
  • [12] J. Williams, M. Lawrence, P. Walker, The influence of constituents on the properties of the bio-aggregate composite hemp-lime, Constr. Build. Mater. 159 (2018) 9–17. https://doi.org/10.1016/j.conbuildmat.2017.10.109.
  • [13] M. Degrave-Lemeurs, P. Glé, A. Hellouin de Menibus, Acoustical properties of hemp concretes for buildings thermal insulation: Application to clay and lime binders, Constr. Build. Mater. 160 (2018) 462–474. https://doi.org/10.1016/j.conbuildmat.2017.11.064.
  • [14] V. Barbieri, M. Lassinantti Gualtieri, C. Siligardi, Wheat husk: A renewable resource for bio-based building materials, Constr. Build. Mater. 251 (2020) 118909. https://doi.org/10.1016/J.CONBUILDMAT.2020.118909.
  • [15] M.I. Reddy, M.A. Kumar, S.A. Reddy, P.V.K. Raju, Thermo physical properties of Jute, Pineapple leaf and Glass fiber reinforced polyester hybrid composites, Materıals Today-Proceedıngs 5 (2018) 21055–21060.
  • [16] J. Militký, A. Jabbar, Comparative evaluation of fiber treatments on the creep behavior of jute/green epoxy composites, Compos. Part B Eng. 80 (2015) 361–368. https://doi.org/10.1016/j.compositesb.2015.06.014.
  • [17] H. Ahmad, M. Islam, M. Uddin, Thermal and Mechanical properties of epoxy-jute fiber composite, J. Chem. Eng. 27 (2014) 77–82. https://doi.org/10.3329/jce.v27i2.17807.
  • [18] D. Djeghader, B. Redjel, Effect of water absorption on the Weibull distribution of fatigue test in jute-reinforced polyester composite materials, Adv. Compos. Lett. 28 (2019) 096369351985383. https://doi.org/10.1177/0963693519853833.
  • [19] B. V. Subrahmanyam, S. V. Gopala Krishna, R. Jithedra Kumar, S.B.R. Devireddy, Experimental and micromechanical thermal characteristics of jute fiber reinforced polyester composites, in: Mater. Today Proc., Elsevier Ltd, 2019: pp. 350–356. https://doi.org/10.1016/j.matpr.2019.06.311.
  • [20] F. Rahman, A. Eiamin, M.R. Hasan, S. Islam, M.M. Haque, M.A. Gafur, S.A. Dhar, Effect of Fiber Loading and Orientation on Mechanical and Thermal Properties of Jute-Polyester Laminated Composite, J. Nat. Fibers 19 (2022) 1741–1755. https://doi.org/10.1080/15440478.2020.1788485.
  • [21] N.V. Subba Raju, M.I. Reddy, M.A. Kumar, K. Ramji, Study on thermo physical properties of hemp, jute and glass fiber reinforced polyester composites, Mater. Today Proc. 5 (2018) 5918–5924. https://doi.org/10.1016/j.matpr.2017.12.191.
  • [22] H. Dhakal, Z.T. Zhang, M. Richardson, Effect of water absorption on the mechanical properties of hemp fibre reinforced unsaturated polyester composites, Compos. Sci. Technol. 67 (2007) 1674–1683. https://doi.org/10.1016/j.compscitech.2006.06.019.
  • [23] A. Vinod, J. Tengsuthiwat, Y. Gowda, R. Vijay, M.R. Sanjay, S. Siengchin, H.N. Dhakal, Jute/Hemp bio-epoxy hybrid bio-composites: Influence of stacking sequence on adhesion of fiber-matrix, Int. J. Adhes. Adhes. 113 (2022) 103050. https://doi.org/10.1016/j.ijadhadh.2021.103050.
  • [24] K. Yaman, Bitkisel atıkların değerlendirilmesi ve ekonomik önemi, Kastamonu Üniversitesi, Orman Fakültesi Derg. 12 (2012) 339–348.
  • [25] A.N. Beskopylny, S.A. Stel’makh, E.M. Shcherban’, L.R. Mailyan, B. Meskhi, A.A. Shilov, A. Chernil’nik, D. El’shaeva, Effect of Walnut-Shell Additive on the Structure and Characteristics of Concrete, Materials (Basel). 16 (2023). https://doi.org/10.3390/ma16041752.
  • [26] H. Marey, G. Kozma, G. Szabó, Effects of Using Green Concrete Materials on the CO2 Emissions of the Residential Building Sector in Egypt, Sustainability 14 (2022). https://doi.org/10.3390/su14063592.
  • [27] M.Y. Abdulwahid, A.A. Akinwande, M. Kamarou, V. Romanovski, I.A. Al-Qasem, The production of environmentally friendly building materials out of recycling walnut shell waste: a brief review, Biomass Convers. Biorefinery (2023). https://doi.org/10.1007/s13399-023-04760-2.
  • [28] H.E. Balcıoğlu, Ö. Yeşil, M. Aktaş, Ceviz Kabuğu Takviyeli Polyester Reçinenin Aşınma Dirençlerinin Belirlenmesi, 1, Ulus. Geri Kazanım Kongre ve Sergisi (2012) 2–4.
  • [29] P. Pradhan, A. Satapathy, Physico-mechanical characterization and thermal property evaluation of polyester composites filled with walnut shell powder, Polym. Polym. Compos. 30 (2022) 09673911221077808. https://doi.org/10.1177/09673911221077808.
  • [30] C.B. Talikoti, T.T. Hawal, P.P. Kakkamari, M.S. Patil, Preparation and characterization of epoxy composite reinforced with walnut shell powder, Int. Res. J. Eng. Technol. 2 (2015) 721–725.
  • [31] V. Ahlawat, S. Kajal, A. Parinam, Experimental analysis of tensile, flexural, and tribological properties of walnut shell powder/polyester composites, Euro-Mediterranean J. Environ. Integr. 4 (2018) 1. https://doi.org/10.1007/s41207-018-0085-6.
  • [32] M.U. Obidiegwu, S.C. Nwanonenyi, I.O. Eze, I.C. Egbuna, The effect of walnut shell powder on the properties of polypropylene filled composite, Int. Asian Res. J. 2 (2014) 22–29.
  • [33] P. Pączkowski, Properties of Eco-Friendly Composites Based on Post-Consumer Recycled Resin Filled with Walnut Shell Powder, Polymers (Basel). 15 (2023) 4389. https://doi.org/10.3390/polym15224389.
  • [34] ASTM C597-16, Standard Test Method for Pulse Velocity through Concrete., American Society for Testing Materials, Philadelphia., 2016.
  • [35] TS EN 12390-3, Testing hardened concrete - Part 3: Compressive strength of test specimens, Turkish Standards Institution, Ankara, 2019.
  • [36] TS EN 60695-11-10, Fire hazard testing -- Part 11-10: Test flames - 50 W horizontal and vertical flame test methods, 2014.
  • [37] H. Polat, İ. Üstün, A. Şafak, A.N. Çakılcıoğlu, Utilization of waste brick powder as admixture in polymer concrete: Investigation of mechanical properties, Recep Tayyip Erdogan Univ. J. Sci. Eng. 4 (2023) 76–86. https://doi.org/10.53501/rteufemud.1306484.
  • [38] H. Polat, B. Demirel, M.N. Kolak, M. Oltulu, Investigation of the use of barite mineral in polymer concrete, Bingol Univ. J. Tech. Sci. 1 (2020) 25–32. https://dergipark.org.tr/en/download/article-file/2039838.
  • [39] V. Akyuncu, F. Sanliturk, Investigation of physical and mechanical properties of mortars produced by polymer coated perlite aggregate, J. Build. Eng. 38 (2021) 102182. https://doi.org/10.1016/j.jobe.2021.102182.
  • [40] M.N. Kolak, M. Oltulu, Investigation of thermal conductivity properties of polymer based composites containing waste materials, Int. J. Eng. Res. Dev. 13 (2021) 310–320. https://doi.org/10.29137/umagd.822265.
  • [41] M. Kaya, Alev Geciktirici Ve Duman Bastırıcı Katkı Maddeleri, Eskişehir Osmangazi Üniversitesi Mühendislik ve Mimar. Fakültesi Derg. 11 (1998) 77–88. https://dergipark.org.tr/en/download/article-file/327266.
  • [42] N.A. Isitman, C. Kaynak, Effect of partial substitution of aluminum hydroxide with colemanite in fire retarded low-density polyethylene, J. Fire Sci. 31 (2012) 73–84. https://doi.org/10.1177/0734904112454835.
  • [43] B. Aydoğan, N. Usta, Nanokil ve kabaran alev geciktirici ilavesinin rijit poliüretan köpük malzemelerin ısıl bozunma ve yanma davranışlarına etkilerinin incelenmesi, Gazi Üniversitesi Mühendislik-Mimarlık Fakültesi Derg. 30 (2015) 9–18. https://doi.org/10.17341/gummfd.50725.

Investigation of Physical and Mechanical Properties of Polyester Matrix Polymer Composites Containing Walnut Shell Waste and CEN Sand

Year 2025, Volume: 18 Issue: 1, 171 - 188, 28.03.2025
https://doi.org/10.18185/erzifbed.1564095

Abstract

The aim of this study is to investigate the potential of using walnut shells, which are agricultural waste, in polymer composites in order to reduce the environmental impacts and contribute to the production of sustainable materials. In this direction, Flame Retardant Polyester (FRP) was used as a binder in the production of composite materials, while standard CEN sand and Waste Walnut Shells (WWS) were used as filler materials. While creating composite mixture groups, FRP was preferred at 50% and filler at 50%. Then, while keeping the FRP ratio constant, WWS was replaced by standard CEN sand at 25%, 50%, 75% and 100% by volume. The apparent density, water absorption, porosity, ultrasonic pulse velocity (UPV) and compressive strengths of the produced polymer composites were investigated. In the specimens where WWS was replaced by 100% with standard CEN sand, a decrease of 27%, 20% and 28% was detected in compressive strengths, UPV and apparent density values, respectively, compared to the control specimen. The most negative behavior in terms of water absorption was observed in the specimen coded WS75 with a water absorption rate of 0.80%. The use of WWS in polymer composite production is evaluated as an economical raw material source, contributes to the prevention of environmental pollution and is also important with its potential to be recycled into the economy.

Ethical Statement

There are no ethical issues regarding the publication of this study

References

  • L. Thomas, J. Sebastian, A. Santhosh, R. Vijay, V.N. Ajukumar, M.T.B.H. Hameed Sultan, M. Mubarak Ali, Physicochemical Modifications on Fibre Reinforced Polymer Composites for Mining Applications, J. Mines, Met. Fuels (2023) 2545–2553. https://doi.org/10.18311/jmmf/2023/36535.
  • [2] R. Phiri, S. Mavinkere Rangappa, S. Siengchin, O.P. Oladijo, H.N. Dhakal, Development of sustainable biopolymer-based composites for lightweight applications from agricultural waste biomass: A review, Adv. Ind. Eng. Polym. Res. 6 (2023) 436–450. https://doi.org/10.1016/j.aiepr.2023.04.004.
  • [3] Y. Karaduman, Viscoelastic properties of natural fiber reinforced cork based sandwich composites, Pamukkale Univ. J. Eng. Sci. 24 (2018) 1257–1261. https://doi.org/10.5505/pajes.2018.56492.
  • [4] M.N. Kolak, Polimer esaslı kenevir, ketencik ve perlit içeren kompozitlerin fiziko-mekanik ve termal özelliklerinin incelenmesi, Atatürk Üniversitesi, 2023.
  • [5] S.H. Kamarudin, M.S. Mohd Basri, M. Rayung, F. Abu, S. Ahmad, M.N. Norizan, S. Osman, N. Sarifuddin, M.S. Desa, U.H. Abdullah, I.S. Mohamed Amin Tawakkal, L.C. Abdullah, A Review on Natural Fiber Reinforced Polymer Composites (NFRPC) for Sustainable Industrial Applications, Polymers (Basel). 14 (2022). https://doi.org/10.3390/polym14173698.
  • [6] S. Rajaram, T. Subbiah, F.S. Arockiasamy, J. Iyyadurai, Transforming Agricultural Waste into Sustainable Composite Materials: Mechanical Properties of Tamarindus Fruit Fiber (TFF)-Reinforced Polylactic Acid Composites, in: Int. Conf. Process. Perform. Mater. (ICPPM 2023), MDPI, Basel Switzerland, 2024: p. 32. https://doi.org/10.3390/engproc2024061032.
  • [7] M.T. Ferrandez-García, C.E. Ferrandez-Garcia, T. Garcia-Ortuño, A. Ferrandez-Garcia, M. Ferrandez-Villena, Study of waste jute fibre panels (Corchorus capsularis L.) agglomerated with portland cement and starch, Polymers (Basel). 12 (2020) 599. https://doi.org/10.3390/polym12030599.
  • [8] N. Stevulova, J. Cigasova, I. Schwarzova, A. Sicakova, J. Junak, Sustainable bio-aggregate-based composites containing hemp hurds and alternative binder, Buildings 8 (2018) 25. https://doi.org/10.3390/buildings8020025.
  • [9] V. Barbieri, M. Lassinantti Gualtieri, T. Manfredini, C. Siligardi, Lightweight concretes based on wheat husk and hemp hurd as bio-aggregates and modified magnesium oxysulfate binder: Microstructure and technological performances, Constr. Build. Mater. 284 (2021) 122751. https://doi.org/10.1016/j.conbuildmat.2021.122751.
  • [10] M. Charai, H. Sghiouri, A. Mezrhab, M. Karkri, Thermal insulation potential of non-industrial hemp (Moroccan cannabis sativa L.) fibers for green plaster-based building materials, J. Clean. Prod. 292 (2021) 126064. https://doi.org/10.1016/j.jclepro.2021.126064.
  • [11] P. Brzyski, M. Gładecki, M. Rumińska, K. Pietrak, M. Kubiś, P. Łapka, Influence of hemp shives size on hygro-thermal and mechanical properties of a hemp-lime composite, Materials (Basel). 13 (2020) 5383. https://doi.org/10.3390/ma13235383.
  • [12] J. Williams, M. Lawrence, P. Walker, The influence of constituents on the properties of the bio-aggregate composite hemp-lime, Constr. Build. Mater. 159 (2018) 9–17. https://doi.org/10.1016/j.conbuildmat.2017.10.109.
  • [13] M. Degrave-Lemeurs, P. Glé, A. Hellouin de Menibus, Acoustical properties of hemp concretes for buildings thermal insulation: Application to clay and lime binders, Constr. Build. Mater. 160 (2018) 462–474. https://doi.org/10.1016/j.conbuildmat.2017.11.064.
  • [14] V. Barbieri, M. Lassinantti Gualtieri, C. Siligardi, Wheat husk: A renewable resource for bio-based building materials, Constr. Build. Mater. 251 (2020) 118909. https://doi.org/10.1016/J.CONBUILDMAT.2020.118909.
  • [15] M.I. Reddy, M.A. Kumar, S.A. Reddy, P.V.K. Raju, Thermo physical properties of Jute, Pineapple leaf and Glass fiber reinforced polyester hybrid composites, Materıals Today-Proceedıngs 5 (2018) 21055–21060.
  • [16] J. Militký, A. Jabbar, Comparative evaluation of fiber treatments on the creep behavior of jute/green epoxy composites, Compos. Part B Eng. 80 (2015) 361–368. https://doi.org/10.1016/j.compositesb.2015.06.014.
  • [17] H. Ahmad, M. Islam, M. Uddin, Thermal and Mechanical properties of epoxy-jute fiber composite, J. Chem. Eng. 27 (2014) 77–82. https://doi.org/10.3329/jce.v27i2.17807.
  • [18] D. Djeghader, B. Redjel, Effect of water absorption on the Weibull distribution of fatigue test in jute-reinforced polyester composite materials, Adv. Compos. Lett. 28 (2019) 096369351985383. https://doi.org/10.1177/0963693519853833.
  • [19] B. V. Subrahmanyam, S. V. Gopala Krishna, R. Jithedra Kumar, S.B.R. Devireddy, Experimental and micromechanical thermal characteristics of jute fiber reinforced polyester composites, in: Mater. Today Proc., Elsevier Ltd, 2019: pp. 350–356. https://doi.org/10.1016/j.matpr.2019.06.311.
  • [20] F. Rahman, A. Eiamin, M.R. Hasan, S. Islam, M.M. Haque, M.A. Gafur, S.A. Dhar, Effect of Fiber Loading and Orientation on Mechanical and Thermal Properties of Jute-Polyester Laminated Composite, J. Nat. Fibers 19 (2022) 1741–1755. https://doi.org/10.1080/15440478.2020.1788485.
  • [21] N.V. Subba Raju, M.I. Reddy, M.A. Kumar, K. Ramji, Study on thermo physical properties of hemp, jute and glass fiber reinforced polyester composites, Mater. Today Proc. 5 (2018) 5918–5924. https://doi.org/10.1016/j.matpr.2017.12.191.
  • [22] H. Dhakal, Z.T. Zhang, M. Richardson, Effect of water absorption on the mechanical properties of hemp fibre reinforced unsaturated polyester composites, Compos. Sci. Technol. 67 (2007) 1674–1683. https://doi.org/10.1016/j.compscitech.2006.06.019.
  • [23] A. Vinod, J. Tengsuthiwat, Y. Gowda, R. Vijay, M.R. Sanjay, S. Siengchin, H.N. Dhakal, Jute/Hemp bio-epoxy hybrid bio-composites: Influence of stacking sequence on adhesion of fiber-matrix, Int. J. Adhes. Adhes. 113 (2022) 103050. https://doi.org/10.1016/j.ijadhadh.2021.103050.
  • [24] K. Yaman, Bitkisel atıkların değerlendirilmesi ve ekonomik önemi, Kastamonu Üniversitesi, Orman Fakültesi Derg. 12 (2012) 339–348.
  • [25] A.N. Beskopylny, S.A. Stel’makh, E.M. Shcherban’, L.R. Mailyan, B. Meskhi, A.A. Shilov, A. Chernil’nik, D. El’shaeva, Effect of Walnut-Shell Additive on the Structure and Characteristics of Concrete, Materials (Basel). 16 (2023). https://doi.org/10.3390/ma16041752.
  • [26] H. Marey, G. Kozma, G. Szabó, Effects of Using Green Concrete Materials on the CO2 Emissions of the Residential Building Sector in Egypt, Sustainability 14 (2022). https://doi.org/10.3390/su14063592.
  • [27] M.Y. Abdulwahid, A.A. Akinwande, M. Kamarou, V. Romanovski, I.A. Al-Qasem, The production of environmentally friendly building materials out of recycling walnut shell waste: a brief review, Biomass Convers. Biorefinery (2023). https://doi.org/10.1007/s13399-023-04760-2.
  • [28] H.E. Balcıoğlu, Ö. Yeşil, M. Aktaş, Ceviz Kabuğu Takviyeli Polyester Reçinenin Aşınma Dirençlerinin Belirlenmesi, 1, Ulus. Geri Kazanım Kongre ve Sergisi (2012) 2–4.
  • [29] P. Pradhan, A. Satapathy, Physico-mechanical characterization and thermal property evaluation of polyester composites filled with walnut shell powder, Polym. Polym. Compos. 30 (2022) 09673911221077808. https://doi.org/10.1177/09673911221077808.
  • [30] C.B. Talikoti, T.T. Hawal, P.P. Kakkamari, M.S. Patil, Preparation and characterization of epoxy composite reinforced with walnut shell powder, Int. Res. J. Eng. Technol. 2 (2015) 721–725.
  • [31] V. Ahlawat, S. Kajal, A. Parinam, Experimental analysis of tensile, flexural, and tribological properties of walnut shell powder/polyester composites, Euro-Mediterranean J. Environ. Integr. 4 (2018) 1. https://doi.org/10.1007/s41207-018-0085-6.
  • [32] M.U. Obidiegwu, S.C. Nwanonenyi, I.O. Eze, I.C. Egbuna, The effect of walnut shell powder on the properties of polypropylene filled composite, Int. Asian Res. J. 2 (2014) 22–29.
  • [33] P. Pączkowski, Properties of Eco-Friendly Composites Based on Post-Consumer Recycled Resin Filled with Walnut Shell Powder, Polymers (Basel). 15 (2023) 4389. https://doi.org/10.3390/polym15224389.
  • [34] ASTM C597-16, Standard Test Method for Pulse Velocity through Concrete., American Society for Testing Materials, Philadelphia., 2016.
  • [35] TS EN 12390-3, Testing hardened concrete - Part 3: Compressive strength of test specimens, Turkish Standards Institution, Ankara, 2019.
  • [36] TS EN 60695-11-10, Fire hazard testing -- Part 11-10: Test flames - 50 W horizontal and vertical flame test methods, 2014.
  • [37] H. Polat, İ. Üstün, A. Şafak, A.N. Çakılcıoğlu, Utilization of waste brick powder as admixture in polymer concrete: Investigation of mechanical properties, Recep Tayyip Erdogan Univ. J. Sci. Eng. 4 (2023) 76–86. https://doi.org/10.53501/rteufemud.1306484.
  • [38] H. Polat, B. Demirel, M.N. Kolak, M. Oltulu, Investigation of the use of barite mineral in polymer concrete, Bingol Univ. J. Tech. Sci. 1 (2020) 25–32. https://dergipark.org.tr/en/download/article-file/2039838.
  • [39] V. Akyuncu, F. Sanliturk, Investigation of physical and mechanical properties of mortars produced by polymer coated perlite aggregate, J. Build. Eng. 38 (2021) 102182. https://doi.org/10.1016/j.jobe.2021.102182.
  • [40] M.N. Kolak, M. Oltulu, Investigation of thermal conductivity properties of polymer based composites containing waste materials, Int. J. Eng. Res. Dev. 13 (2021) 310–320. https://doi.org/10.29137/umagd.822265.
  • [41] M. Kaya, Alev Geciktirici Ve Duman Bastırıcı Katkı Maddeleri, Eskişehir Osmangazi Üniversitesi Mühendislik ve Mimar. Fakültesi Derg. 11 (1998) 77–88. https://dergipark.org.tr/en/download/article-file/327266.
  • [42] N.A. Isitman, C. Kaynak, Effect of partial substitution of aluminum hydroxide with colemanite in fire retarded low-density polyethylene, J. Fire Sci. 31 (2012) 73–84. https://doi.org/10.1177/0734904112454835.
  • [43] B. Aydoğan, N. Usta, Nanokil ve kabaran alev geciktirici ilavesinin rijit poliüretan köpük malzemelerin ısıl bozunma ve yanma davranışlarına etkilerinin incelenmesi, Gazi Üniversitesi Mühendislik-Mimarlık Fakültesi Derg. 30 (2015) 9–18. https://doi.org/10.17341/gummfd.50725.
There are 43 citations in total.

Details

Primary Language English
Subjects Construction Materials
Journal Section Makaleler
Authors

Mehmet Nuri Kolak 0000-0003-3533-3422

Early Pub Date March 26, 2025
Publication Date March 28, 2025
Submission Date October 9, 2024
Acceptance Date March 15, 2025
Published in Issue Year 2025 Volume: 18 Issue: 1

Cite

APA Kolak, M. N. (2025). Investigation of Physical and Mechanical Properties of Polyester Matrix Polymer Composites Containing Walnut Shell Waste and CEN Sand. Erzincan University Journal of Science and Technology, 18(1), 171-188. https://doi.org/10.18185/erzifbed.1564095